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Phase Noise in Oscillators: A Mathematical Analysis of
Leeson’s Model

GERARD SAUVAGE

Abstract—This paper is devoted to one aspect of the study of
phase noise in oscillators: how an oscillator reacts to internal noise
that occurs in the active element. The following theoretical analysis
will lead us to express the Leeson’s model in a more general
form.

INTRODUCTION

SCILLATOR DESIGNERS and users often refer
to the well-known Leeson’s model [1] in-order to
explain the power-law spectral density of phase noise that
occurs in real oscillators. This model is characterized by
its author as being a “‘heuristic” model. More exactly, it is
based on physical reasoning rather than on a detailed
theoretical analysis. In this model, a feedback oscillator
is viewed as a phase servo having positive feedback. Thus
for modulation rates less than the half-bandwidth of the
- feedback (wo/2Q, where wg is the nominal angular fre-
quency and @ is the resonator quality factor), phase error
due to noise results in a frequency error determined by the
phase—frequency relation. Qutside the feedback band-
width, the feedback has no effect. This reasoning leads to
the following relationship:

N .
S¢(@) = Si(w)|L(jw)|?
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where S 4(w) is the power spectral density of phase noise
at the output of the oscillator, S;(w) is the power spectral
density of the internal phase uncertainties, and | L (j(w)|?
= [1 + (a/w)?] is Leeson’s transfer function for an RLC
resonator where « = wo/2Q.

The spectral density S;{w) is generally found to have a
“flicker” component (w~! law) and a white-noise compo-
nent («° law). For a high @ such as in a quartz oscillator,
the expected laws for S s(w) are then w3 (flicker frequency
noise), w~! (flicker phase noise), «® (white-phase noise).
This case where wo/2Q < w, is shown graphically in Fig.
1.

This kind of spectral density has often been observed
with quartz crystal oscillators [1], [2]. So, the validity of
Leeson’s model is enhanced by the good agreement be-
tween the predictions and experimental results. With this
in mind, it seems advisable to establish a theoretical
analysis verifying the validity of this model, and possibly
expressing it in a more general form.

MATHEMATICAL ANALYSIS

First, let us consider the block diagram of an oscillator
(Fig. 2) which shows clearly the two basic elements: the
amplifier and the selective feedback filter. It is "worth
noting that the general block diagram used for this
mathematical analysis does not deal with the detail of the
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Fig. 2. Block diagram of an oscillator.

oscillator. Especially, the nonlinearities of the amplifier
will not be considered. .

Let us now suppose that the phase-noise modulation
occurs in the oscillator active element as being ¢o(t); and
we want to know how the oscillator reacts to this internal
noise by expressing the power spectral density of phase
noise at points E and S. According to the signal trans-
mission theory, the bandpass filtering of a phase-modu-
lated HF signal is identical to the low-pass filtering of the
modulating signal in an equivalent filter. Thus the rela-
tionships which result from the null-phase condition upon
the loop and from the filtering of ¢g(t) by the selective
filter, may be written as

ds(t) + dolt) = $E(t)

+o
bs(t) = f_ " GEhr(t’ ~ AL = $5(t) + har(t)

where hgp(t) is the impulse response of the equivalent
low-pass filter and * denotes a convolution product. It can
be demonstrated that the integral defining ¢g(t) converges
for nearly all samples of ¢g(t) provided that the filter is
linear and time invariant, and that the stationary random
process ¢g(t) possesses a finite second-order moment

[3].}
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Fig. 3. Low-pass filter with finite attenuation.

By definition, the autocorrelation function of ¢o(t) may
be written as

Ryogo(ts — t2) = dolt1)do(to)
(the bar denotes statistical average). We then have
Ropo(t1 — t2) = [dE(t1) — ds(t D or(ts) — ds(ta)]

Rougpolt1 — to) = $pt0o5(E2) + dsEDds (o)
— ¢p(t)ds(ts) — ds(t)or(ts).

In this relationship the autocorrelation and cross-corre-
lation functions appear between phase fluctuations at the
filter input and output. To develop this expression, con-
sider relationships (1).

If ¢g(t) and ¢g(t) are two stationary, and jointly sta-
tionary of order two, random processes then:

Roper(ts = t2), Ryses(ts — to), Rygep(ts — t2)
and R¢E¢S,(t1 - tg)

only depend on ¢, — t; = 7. We have the following rela-
tions:

Rys45(1) = Ryspp(r) * h(7)
Rypos(7) = Rypep(r) » h(7)
Rypps(7) = R* 555 (—7)
R*¢S¢S(_T) = Rq)sq)s(T)- (1)
Thus a relation may be established between R ;4,(7) and’
R z4p () which reads
Ryopo(T) = Ropop(1) + Roses (1) = Rysep(1) — Rypos(7)
Ryopel(7) = R¢E¢E(T) + Ryppp(r) * h*(—7) * h(7)
= Rypop(7) x h(7) — Rypop (1) * h*(—7).

The Fourier transform of this expression gives the re-
lationship between the power spectral density of internal
phase uncertainties occurring in the amplifier and the
power spectral density of phase noise at the output E of
the oscillator

Sepp(@) = Spp(w)[1 + Hjw)H*(jw) — H(jw) — H*(j)]
hence
Spp(w) = Syplw) [(H(jw) — D(H*(w) — DL (2)

This expression is a more general form of Leeson’s model,
showing clearly the role of the equivalent low-pass filter
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TABLE I LG
x(dB) ] 10 Log 8
-20dB 1.23 1dB
—14dB 1.56 2dB
-10dB 2.16 3.3dB
TABLE 11
x dB —-20 dB —14 dB —10 dB .4 finite attenuation resonator (omplifist output)
y dB —19dB —12dB —6.7dB \ e omplifior sotmut)
.L.C. resoneror (amplifier outpu

transfer function. In the case of an RLC resonator, we
obtain Leeson’s transfer function as shown in the next
section.

APPLICATIONS

Two examples are treated in this section.
1) RLC filter denoting H,(jw) the equivalent low-pass
transfer function of the RLC filter, then

H,(w) = (_x*_ - witha = ;—5
- (- ) 5]
s (1)

This is the result obtained in Leeson’s original paper. If the
signal is taken at the amplifier input (point S, see Fig. 1)
we have:

Sps(@) = Syo(w) | Hi(w) |2 = smu)<)

2) Some filters have a finite attenuation outside the
half-bandwidth (for example quartz-crystal resonator).
As an example, let us now consider the following low-pass
filter transfer function
' w1(Jw + wo)
wo(fw + wy)

Substituting Ha(Jw) in (2) gives

wl(]:w + wo) _ 1)
wolJw + w1)

Ho(jw) =

&gm=smww<

. <w1(w2 ~jw)
walw — Jjw)

)]

Sepw) = Sgolw)

(1—- cj1/w2)2 <1 * %)2

= Syo(w)0 <1 + <5:)—1>2>

This transfer function has the same behavior as Leeson’s
- transfer function, except for a numerical constant 6, de-
pending on the attenuation outside the filter bandwidth.
In fact, for practical filters (x = 20 dB) the factor  has
negligible effect as shown in Table I. '
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Fig. 4. Recap of transfer function.

If the signal is taken at the amplifier input, we have:
Sgs(w) = S¢E(w)|H2(](‘-’) |2

1 w9 2
=S, (@) ———— <1 + <~> )
4)0((.0) (1 _ wl/w2)2 w
This transfer function is different from Leeson’s model
[(¢/w)?] in the way that the attenuation (y dB) outside the
bandwidth (w > ws) is close to x dB as shown in Table II.
The various transfer functions are reported in-Fig. 4.

CONCLUSION

It is hoped that this theoretical analysis of phase noise
in oscillators may justify more completely the use of the
power-law spectral density model [4]. Indeed, phase
spectral densities of the form k,/~* (witha =3, 2, 1, 0)
appear not only as a useful picture but denote the behavior
of phase noise in oscillators. This study must be considered
as a step in oscillators noise theory and may lead to a better
understanding of phase noise spectral densities in the case
of complicated filter transfer functions.
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