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Characterization of Phase and Frequency
Instabilities in Precision Frequency
Sources: Fifteen Years of Progress

JACQUES RUTMAN, MEMBER, IEEE

Abstract—Precision frequency sources such as quartz oscillators,
masers, and passive atomic frequency standards are affected by phase
and frequency instabilities including both random and deterministic
components. It is of prime importance to have a comprehensive
characterization of these instabilities in order to be able to assess the
potential utility of each source. For that purpose, many parameters
have been proposed especially for dealing with random fluctuations.
Some of them have been recommended by the IEEE Subcommittee
on Frequency Stability and later by Study Group 7 on ‘“Standard
Frequencies and Time Signals” of the International Radio Consultative
Committee (CCIR). Others are not so widely used but show interesting
capabilities. This paper aims at giving a broad review of parameters
proposed for phase and frequency instability characterization, including
both classical widely used coneepts and more recent less familiar ap-
proaches. Transfer functions that link frequency-domain and time-
domain parameters are emphasized because they provide improved
understanding of the properties of a given time-domain parameter or
facilitate introducing of new parameters. As far as new approaches
are concerned, an attempt has been made to demonstrate clearly their
respective advantages. To this end, some developments that did not
appear in the original references are presented here, e.g., the modified
three sample variance Ef,(-r), the expressions of <6)7%~>, the interpreta-
tion of structure functions of phase and its relations with 2}2,(7) and the
Hadamard variance: The effects of polynomial phase and frequency
drifts on various parameters have also been pointed out in parallel with
those of random processes modeled by power-law spectral densities.

I. INTRODUCTION

HASE AND FREQUENCY instability characterization
Phas become of great concern to many engineers working

in various fields since an increasing number of systemsrely
upon high-quality time and frequency sources such as quartz-
crystal oscillators, frequency synthesizers, atomic frequency
standards and clocks; also, the advent of frequency stabilized
lasers has provided us with frequency standards in the optical
range.

The following nonexhaustive list of systems illustrates the
wide range of users [1], [2]:

1) Doppler radar systems with a narrow bandwidth receiver
tuned to detect the shifted frequency return need high-
performance transmitter oscillators and receiver local oscillators
since any instability limits range resolution and sensitivity.

2) Oscillators are used -in missiles and spacecrafts for a
variety of purposes including guidance, tracking, and communi-
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cations; frequency instabilities are harmful in all cases because
they degrade system performance.

3) In range measurements where ranging signals are phase
compared relative to a reference signal, instabilities in any of
the oscillators involved introduce an uncertainty in the range
estimate.

4) In communication systems, interference is reduced and
performance is improved by better frequency control of the
carrier frequencies. In digital communications, emphasis is
put on the timing capability of the network clocks: an ade-
quate performance measure, the maximum time interval
error, is related to clocks phase and frequency instabilities.
For long-term frequency fluctuations, a fractional value of
1 part in 10! or better is recommended by the International
Telegraph and Telephone Consultative Committee (CCITT)
for the interconnection of several synchronous networks on
the international level.

5) Of course, one should not forget the field of time and
frequency metrology where sophisticated laboratory-type
time and frequency standards are designed, constructed and
operated, e.g., long cesium-beam and hydrogen devices. In
fact, with few exceptions, most of the widely used stability
measures have been developed by scientists working in the
field. :

A practical problem is that several groups of people with
different backgrounds have had to find a common language
for oscillator specifications.

The question was how to develop a useful and comprehen-
sive characterization of phase and frequency instabilities that
can be understood and applied by everyone. More specifically,
in each field, everyone wanted to know how instabilities affect
system performance and how the possible instability measures
can be used to assess system performance. Of course, no single
answer can be given and much work has been carried out during
the last fifteen years to provide some useful answers.

Frequency stability was already recognized as an important
problem at the beginning of the sixties: the special IEEE-NASA
Symposium on Short-Term Frequency Stability held at God-
dard Space Flight Center on November 23-24; 1964 [1] ap-
peared as the first opportunity for cross-fertilization of ideas.
Following this Symposium, an IEEE Subcommittee on Fre-
quency Stability of the Technical Committee on Frequency
and Time was created with the ultimate aim of providing a set
of recommendations for standards and definitions on both
short-term and long-term stability. A Special Issue of the
PROCEEDINGS OF THE IEEE was devoted to frequency sta-
bility in February 1966 [2] to promote further exchange of
information, the Subcommittee serving as Editorial Committee.
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Several basic papers dealing explicitly with frequency stability
characterization in both frequency and time domains and in-
cluding the translations between them, were then published
[3]1-17]1. Of particular interest, the use of sample variances
for time-domain characterization was developed in [7].

In May 1971, the Subcommittee issued a paper1 [8] pre-
sented as technical background for an eventual IEEE standard
definition (not yet adopted): two definitions of frequency
stability were given together with translation relationships
that play an important theoretical and practical role. Both
have gained wide acceptance among manufacturers and users
of precision frequency sources.

In the present paper, following a description of the mathe- -

matical models and basic definitions given in Section 1I, the
parameters proposed as frequency stability measures will be
studied in Section III (Fourier frequency domain) and Section
1V (time domain).

In Section V, emphasis will be put on the role of the transfer
functions which allow one to calculate the time-domain param-
eters (the variances) from the knowledge of the frequency-
domain parameters (the spectral densities).

Up to now, we have mentioned only the basic concepts in
wide use today namely the spectral densities of phase and
frequency fluctuations and the two sample variance of aver-
aged (fractional) frequency fluctuations. But in the mean-
time, other researchers have proposed new concepts leading to
new time domain measures which are believed to exhibit some
specific advantages relatively to the two-sample variance. These
approaches will be presented in Sections VI-VIII with special
emphasis on the relevant transfer functions relating these new
parameters to the spectral densities. The links with more con-
ventional concepts will be also outlined. It must be recognized
that most of these new parameters are not widely used, pos-
sibly because their properties have not been pointed out
clearly enough: our intent is not to recommend strongly the
use of any new parameter but rather to demonstrate as clearly
as possible their potential interest and usefulness. Readers
‘are encouraged to try them whenever p0551b1e to test their
utility. i

From the experimental point of view, many test sets have
been designed to measure frequency instability in both fre-
quency and time domains. Although detailed technical de-
scriptions are beyond the scope of this paper, some typical
features of these systems will be recalled in Section IX.

To summarize, this paper aims at giving a broad review
coverage of the published material on phase and frequency
instability characterization, including both classical concepts
and less familiar approaches. Since many points of view have
been developed with great detail in the literature, only the
main features can be covered here. An attempt has been
made to present the material in a self-contained form that
can be understood by nonspecialists. For more details, the
reader is referred to the references® cited which have not
been selected on the basis of being exhaustive but rather
to point out the significant contributions.

II. MATHEMATICAL MODELS AND BASiCc DEFINITIONS

Before dealing with mathematical models, let us define
rather loosely that by frequency instability, we mean any
unwanted frequency departure from a nominal value vy. In

! Also published as NBS Technical Note 394, October 1970.

2The original notations have sometimes been changed to get a uni-
form terminology throughout this paper.
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other words, frequency stability is the degree to which asource
produces a constant frequency over a specified time interval.
In practice, one often speaks of stability whereas applications
are limited by instabilities; also;, the measurement results
which are much smaller than unity, e.g., 107! and so on, are
indeed values of fractional (or relative or normalized) fre-
quency instability.

The problem is hence the characterization of the unwanted
frequency departures which are time-dependent because of
the various physical mechanisms to be presented in this
section.

A mathematical model is required for the oscillator quasi-
sinusoidal output signal since the mere concept of frequency
instability immediately implies that the signal is no longer a
pure sinewave. Before establishing this model, it is useful to
emphasize first the dichotomy between deterministic and
random variations of the oscillator output frequency.

A. Deterministic Versus Random Frequency Variations.

Due to several physical mechanisms, the output frequency
of any real source (even of the best quality) is continuously
changing with time. Typical changes are as follows.

1) Systematic variations, also known as drifts or trends:
they may be due to the aging of the resonator material (e.g.,

- in quartz oscillators), but are also found in atomic frequency

standards (e.g., some commercial cesium units exhibit a fre-
quency drift of a few parts in 103 per year). These extremely
slow changes are often referred to as “long-term instability”
and expressed in terms of parts in 10* of frequency change per
hour, day, month, or year, according to the device or the ap-
plication. No statistical treatment is needed for the evaluation
of these deterministic processes.

2) Deterministic periodic variations due to unwanted fre-
quency modulation (FM) by periodic signals, such as the
power-supply frequency and its harmonics.” In some cases,
quasi periodic frequency changes may arise from induced FM
that may be traced to temperature, vibrations, pressure, etc.
Of course, these environmental factors may induce more ir-
regular frequency fluctuations.

3) Random fluctuations due to noise sources such as thermal
shot, and flicker noises encountered in electronic components.
The related frequency fluctuations are often referred to as
“short-term” instability since they become more and more
significant when shorter time intervals are considered. Due to
their random nature, statistical treatment is needed for their
characterization. ‘

4) It has been suggested that the frequency of an oscillator
may suddently take on a new and permanent average value.
These frequency steps have limited documentation and it is
not clear whether they are additional to the other parts of the
model or just an unsuspected visual aspect of the data [10],
[12]. Since no significant errors appear when these steps are
ignored, they will not be introduced in the following models.

It is worth noting that expressions such as long-term or short-
term have no absolute meaning; no objective limit can be
given, valid for any oscillators or any applications. It is pre-
fered to state explicitly the durations involved. ~The statis-
tical parameters presented in the next sections are measures
of instability due to random noises. However, in relation
with the preceding d1scussmn some of their limitations must
be pointed out.

1) Any frequency generator is influenced to some extent
by its environment: since we cannot hope to give a unique
prescription for handling every possible case, the proposed
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definitions of frequency instability will be independent of
environmental factors. With proper design, most of these
effects are secondary in importance in a laboratory environ-
ment, but in some applications (e.g., airborne) they may be
by far the most important.. Of course, high-quality oscillators
are designed to minimize environmental sensitivities (e.g., mag-
netic shields in atomic frequency standards). - In short, one
should not expect an accurate prediction of frequency sta-
bility .in a new environment when measurements have been
made in another one [8].

2) A failure to separate systematic trends (drifts) from ran-
dom fluctuations will, in most cases, affect any statistical
measure in a very misleading way because of the dependency
of statistical parameters on the number of samples. When-
ever possible, systematics should be removed before statistical
treatments. Linear frequency drifts can be rather easily sub-
stracted but the elimination of trends is sometimes a tricky
problem: then, it is wise to take off only the most obvious
overall trend [9]. In any case, deterministic elements are not
discarded: they are just recognized, evaluated, substracted be-
fore statistical analysis and reintroduced in the final statement
of oscillators specifications [10].

3) Measures of random frequency fluctuations may have a
time dependence due to aging, e.g., frequency fluctuations
in cesium clocks may increase after several years of continuous
operation [9]. “Short term” measurements are hence valid
only for a limited period.

4) As will be shown in Section IV, statistical measures are
also affected by periodic frequency modulations.

Since’ we have an idea about the expected frequency de-
partures, we are now in position to develop a model for the
oscillator quasi-sinusoidal signal.

B. Model for the Oscillator Signal— Basic Definitions

The output signal of an ideal (noiseless, nondrifting) oscil-
lator could be modeled as a pure sinewave:

V(t) = Vo sin 27rVot (2.1)

where V and vy are the nominal amplitude and frequency,
respectively, (wg = 2myy). For real oscillators, existing de-
partures from V, and vy, have to be included in the model.
The following general expression can be used:

V(t) = [Vq + €(t)] sin [27vyt + B(2)] (2.2)

€(t) is a random process® denoting amplitude fluctuations
around V,, also known as amplitude noise (see Section II-D).
Before dealing with ®(¢), let us emphasize that any frequency
variation immediately implies a related phase variation: more
precisely, the instantaneous frequency is the time rate of change
of phase divided by 2m. Therefore, ®(¢) denotes the phase
modulation that may be traced to frequency departures intro-
duced in Section II-A. A specific example reads as

3

(1) =D 1? + AD sin 2wfit + (1) 2.3)

*In many books on statistics, a real random process is denoted by:
{zg(0)}, —= <t <+, It is an ensemble of real-valued functions which
can be characterized through its probability structure. Each particular
function zx(f) where k is fixed and t is variable is called a sample func-
tion: it may be thought of as the observed result of a single experiment.
For the special class of ergodic random process, it is possible to derive
statistical information about the entire random process from appro-
priate analysis of a single arbitrary sample function. For brevity, we
will not include the symbol { } and the index k in the text. For an
ergodic process, the index k is not needed since any one sample func-
tion is representative of all other sample functions.
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where phase drift is modeled by a second-order polynomial
(related to a linear frequency drift), periodic phase modulation
is just a sinewave modulation and ¢(¢) denotes a random pro-
cess®> modeling the so-called phase noise associated with ran-
dom frequency fluctuations.

In this paper, we are mainly interested in random instabilities.
However, the other terms will be dealt with in Sections V and
VIII since they may greatly affect the statistical measures.

Assuming negligible amplitude noise, the following simplified
model may be used to study the random phase and frequency
fluctuations [8]:

V(t) = Vy sin [2wvet + @(1)]. (2.4)
By definition, the signal instantaneous frequency is
1 d 1 dy(t)
v(t)=— — Quugtt (1)) =vy + — 2.5
() 2wdt( ot + (1)) =g m dr (2.5)
which may be rewritten as
v(t) =y + Av(t) (2.6)
with
1 dp(?)
Av()=—— 2.7
® 2m dt ( . )

where Av(t) is a random process modeling frequency noise.
Of course, for high-quality oscillators:

[Av(e)l <<, 2.8)

for substantially all time ¢.
A useful parameter is the instantaneous fractional (or nor-
malized) frequency deviation y(r) defined as:

Av(z)

y() = .
Vo

(29)

The interest of such a dimensionless quantity is that it remains
unchanged under frequency multiplications and divisions com-
monly encountered in systems (assuming noiseless multipliers
and dividers). Also, it allows easier comparisons among sources
having different nominal frequencies. It is sometimes of in-
terest to introduce the parameter [8], [68]

_ v
X(t) - 27rV0

(2.10)

which is pulse expressed in units of time (sometimes referred
to as phase time). Also, x(¢) is the instantaneous time error of
a clock run from the oscillator having an instantaneous fre-
quency v(f). The following relation holds:

dx(t)

)= I

2.11) |

C.. Mathematical Difficulties (Model Pathologies)

The concepts of phase noise and frequency noise have just
been introduced and modeled by random processes w(t) and
Av(t), respectively. The theory of random processes is well
developed? and should be applied with as much mathematical
rigor as possible. Related problems are discussed below but
first, let us emphasize that models are used to represent the

4“Many textbooks exist on the subject and should be consulted for
more details.
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physical world which is so complex that many details are
ignored in the model: otherwise, the latter would become in-
tractable. On the other hand, properties that have no direct
meaningful counterparts in the real world have to be included
in the model to make it tractable (stationarity of random pro-
cesses is a well-known example). These problems have been
discussed by Slepian [11] and by Barnes [10], [12] who gave
a discussion of model pathologies for stability measurements.

1) Stationarity of Phase Noise: Stationarity of a random
process is a precisely defined mathematical property* meaning
that statistical measures are time-independent. Clearly, life-
time limitations of physical experiments show that stationarity
can only be a property of the model. The question is then
whether and how one can use stationary models. Since we
are looking for models that reasonably describe significant
observables of real systems [8], and since stationary models
are easy to use, stationarity must not be rejected from the
lifetime argument,

For oscillator noise modeling, it is very convenient to assume
the stationarity of ¢(t) since many theoretical results are valid
only in this case, especially those related to correlation func-
tions and spectral densities [5].

However, one should not misuse this assumption when deal-
ing with phase and frequency fluctuations related by (2.7)
which may be rewritten as [13]

t
o) =go t+ [ 2w Av(0) db. (2.12)

"0

From this equation, and assuming that frequency noise is
modeled by a stationary process Av(t) as can be justified by
physical considerations, the random process ¢(¢#) is not gen-
erally stationary. In this case, one should not even use the
correlation function R¢(T) of phase noise, a quantity that
has been widely used in papers on frequency stability. As a
particular case, white noise internal to the oscillator loop
yields a so-called phase diffusion process analog to the math-
ematically ideal Brownian motion [12], [13] at least when
one forgets bandlimiting effects existing in real oscillators.

To summarize, it is convenient to assume the stationarity
of ¢(#) but one must check that this is not in conflict either
with other parts of the model (e.g., properties of Av(¢)) or
with some physical arguments.

2) Existence of the Instantaneous Frequency: A station-
ary random process can quite well have no derivative (it is
differentiable in the mean-square sense. if its correlation func-
tion has derivatives of order up to two). When this happens
to phase noise, it means that the instantaneous frequency is
not defined from the mathematical point of view. This may
occur when discrete phase jumps are included in the model
[13] but also with the ideal Brownian motion phase diffusion
process [14]. In this case, one cannot even use the concept
of instantaneous frequency defined by (2.5).

However, one has to realize that this is a model pathology,
" not a device pathology [12]. Bandwidth limiting that exists
in real circuits yields fluctuations that can be modeled by pro-
cesses where all orders of differentiation can be assumed to
exist.

In conclusion, dealing with the instantaneous frequency, a

key concept for frequency stability characterization, is valid

only if it is properly defined mathematically.
3) Nonstationary Models: The limitations of the stationarity
assumption have been pointed out, and one might well expect
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that one would need nonstationary models for some prob-
lems. However, such models have seldom been found useful
in describing oscillators frequency instability, except maybe
those with stationary increments which belong to a particular
class of nonstationary processes [15], [16]. In fact, some
kind of nonstationarity has to be specified to get a tractable
model. )

Very often, flicker noise and other low-frequency (LF)
divergent noises (defined in: Section III-E) are associated with
nonstationary properties but here again, experimental data and
mathematical models should not be confused; a given set of
data can often be modeled by either a stationary or a nonsta-
tionary model [12]. In terms of observation, neither model
is more correct nor incorrect than the other: one usually
prefers stationary models for simplicity (e.g., a stationary
model has been developed for flicker frequency noise [17]). -

Today, nonstationary random processes belong to a less
familiar branch of statistics although much work has already
been done in this field (see for example [18]). One has to be
aware about these developments since «hey may prove useful
for oscillator specification,

D. Amplitude Noise

In most treatments of frequency stability, the amplitude
noise €(¢) appearing in (2.2) is neglected since:

1) it does not contribute directly to frequency instability
although AM to PM conversion can occur in nonlinear
devices;

2) most high-quality oscillators have some kind of amplitude
stabilization: the degradation of spectral purity (defined
in Section III-F) due to €(¢) usually is smaller than the
one due to ¢(t). However, calculation shows that they
have equal contributions when an external additive noise
process [3], [19] is predominant;

3) limiter stages are used in many systems as an interface
with a frequency standard, thus removing most AM
noise. '

To conclude, one has to worry about AM noise when the
signal is processed by nonlinear devices or when interest is
focused on signal spectral purity since AM noise degrades
directly this performance (see (3.13)). -

III. CHARACTERIZATION OF FREQUENCY STABILITY
IN THE FOURIER FREQUENCY DOMAIN

In this section, we are dealing with the random fluctuations
of phase, frequency.and fractional frequency defined respec-
tively in (2.4), (2.7), and (2.9). Since they are random quan-
tities, statistical parameters are needed for their description,
some of which are classically used in stationary random pro-
cess theory, e.g., correlation functions and spectral densities.

Analysis in the Fourier frequency domain is of great impor-
tance both for theoretical purposes (in terms of included in-
formation) and for application purposes (in terms of power
spreading in the frequency domain, a primary specification
for many engineers). For these reasons; the spectral density
concept has been widely used for oscillator stability character-
ization [3], 5], [8].

From here on, the word “frequency” will be used with two
different meanings not to be confused: the time-dependent
instantaneous frequency »(f) of an oscillator, and the time-
independent Fourier frequency, denoted by f, that will appear
in spectral densities. .



1052

Fig. 1. Two-sided and one-sided

spectral
fluctuations.

densities of frequency

A. Spectral Density of (Fractional) Frequency Noise

Assuming that the frequency noise is modeled by a stationary
process Av(t), the spectral density Sa,(f) is defined as the
Fourier transform of the correlation function [5]

R p(7) = (Av(2) Av(t - 7)) (3.1)

where {( ) denotes the average of the quantity inside the brack-
ets. More precisely, this approach yields the two-sided (TS)
spectral density defined for -oo<f<+0; it is a real non-
negative and an even function of f (Fig. 1):

Sg,s)(f) =f Rpy(7) exp (-i2nf1)dT 3.2)

For theoretical considerations, TS spectral densities often
simplify the calculations. For experimental purposes, the one-
sided spectral density S, (f) defined as follows is used:

San(f) = 2S£1;,S)(f), for 0 < f< o, otherwise zero.

(3.3)

In practice, this quantity may be measured for example by
filtering, squaring, and averaging operations on sample records
of Av(t) or by digital techniques involving the fast Fourier
transform (FFT). Of course, as for any statistical parameter,
only useful estimates may be obtained experimentally [20].

The following equation links the mean-square value of Av(z)
to the area under Sy, (f): :

(Avi(e)) =f San(f) df. (3.4)
]

The dimensions of Sx,(f) are Hz?*/Hz, i.e., Hz.

In the same way, the spectral density Sy(f) of y(t) may be
introduced: it has the dimensions of 1/Hz.

The IEEE Subcommittee has proposed to use Sy(f) as a
definition for the measure of frequency stability in the Fourier
frequency domain: oscillators at different nominal frequencies
may thus be meaningfully compared by plotting their Sy( f) on
the same figure.

It must be recognized that correlation functions and spectral
densities carry exactly the same information about the random
process: however, the spectral density format is very often
more desirable for engineering purposes.

B. Spectral Density of Phase Noise

Despite the problems that may arise concerning the station-
arity of phase noise, it is very convenient to assume that ()
is a stationary process: its one-sided spectral density S, (/) is
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then defined froqu,(T) and has the dimensions of radianz/Hz.
The concept of S,(f) is widely used for several reasons:

1) it is measured with the well-known phase detector tech-
nique implemented in many laboratories (see Section
1X); ' ,

2) it is very simply related to S,,(f), the recommended mea-
sure (3.7);

3) under certain assumptions, it provides an estimate of
signal spectral purity whose direct measurement is often
difficult for high-quality sources (see Section III-F).

C. Translations among Frequency-Domain Measures
From (2.9):
1

YN =5 San(f). (3.9
[4)

Since 2mAw(¢) is the time derivative of ¢(¢) (2.7), the fol-
lowing relationship holds in the frequency domain:

San(f) =128 (1). (3.6)
Combining (3.5) and (3.6) yields
, 2
Sy(f) = <—> S,(f). 3.7
Vo

Thus these three spectral densities carry essentially the same
information, each of them being best suited for a given class
of applications. ‘ '

Also, the spectral density S,(f) of time error x(¢) defined in
(2.10) may be introduced and:

S, (f) =4’ £28,.(f). (3.8)

Last, a general remark is that the modulating processes ¢(¢)
and Aw(t) are slow relatively to the carrier sin 2mpg¢: there-
fore, their spectral densities take significant values only for f
much smaller than v,.

D. Estimation of Spectral Densities

Spectral densities are theoretical concepts involving infinite
duration processes, infinite frequency range and trué averages.
In practice, only finite-duration processes are available and
spectrum analyzers have nonzero-bandwidth frequency win-
dows, limited dynamic ranges, slewing rates (for swept models),
lower and upper Fourier frequency limits, etc.

As a consequence, experimental knowledge of spectral den-
sities suffers from several kinds of limitations.

1) The Fourier frequency range is limited: a lower limit of
about f=1 Hz is reached by several LF analog spectrum ana-
lyzers and about 10™> Hz may be reached with digital tech-
niques using the FFT. An upper limit of tens of k. ohertz is
typical for LF analyzers.

2) Statistical errors result from the use of a finite sample of
observations [20]: error bars should be specified with any ex-
perimental result. Other errors are due to data acquisition and
processing. techniques: systematic errors greater than 10 dB
can occur, a few dB appearing as a typical value. An accuracy
of 0.2 dB can be obtained only by exercising considerable
caution including the study of the analyzer’s filter shape ef-
fects [21].

3) Some analyzers yield only the spectral densities for dis-
crete values of f: narrow lines due to periodic modulation may
be overlooked with such instruments.



RUTMAN: PHASE AND FREQUENCY INSTABILITIES IN PRECISION FREQUENCY SOURCES 1053

Nevertheless, the spectral density concept plays a key role

in stability characterization since it provides an unambigous
identification of the noise processes encountered in real oscil-
lators as shown in the next paragraph.

E. The Power-Law Spectral Density Model

From spectral density measurements made in many labora-
tories on various sources including quartz-crystal oscillators,
masers, passive atomic standards, and other microwave oscil-

lators, it appears that experimental results may quite well be -

modeled by power law curves. For Sy(f), the following model
has been found useful [8]:

Sy(f)=ho f®. (3.9)

The exponent a typically takes the integral values-2,-1, 0,
+1, +2 and is a characteristic of the kind of noise. The con-
stant h, is a measure of the noise level. Nonintegral values
of a@ may also be considered.

For a given oscillator, §,,(f} is the sum of two or three such
terms, the others being negligible.

1) Classification of Power Laws: The integral power laws
may be designated using the classical terminology of “white
noise” for a noise whose spectral density is a constant (inde-
pendent of f), “flicker noise” when it varies as f~' and “ran-
dom walk” when it varies as f~2. Table I summarizes these
laws.

Note that the quantity of interest (frequency versus phase)
must be explicitly stated since both might exist simulta-
neously. Experimental data are usually plotted on log-log
scales where power laws appear as straight lines: the slopes
are then easily recognized (if measurement accuracy is not too
bad) and hence the kinds of noise present in the oscillator.

2) Physical Origins: White and flicker electrical noise sources
are ever present in electronic components. In oscillators, de-
pending on their location in the circuits, their additive con-
tribution to the signal yields either phase modulation (for ex-
ternal noises) or frequency modulation (for internal noise) by
the original noise processes [3]-[5]. Moreover, the so-called
“multiplicative” noises directly modulate the phase or the
frequency according to the physical mechanisms considered.

More specific statements can be made [22].

a) Random walk frequency noise usually relates to the oscil-
lator environment (temperature, vibration, shocks, etc.).

b) Flicker frequency noise sources are not yet fully under-
stood but are thought to be related to the resonator in quartz
oscillators and to electronics and environment in atomic fre-
quency standards [23].

c) White frequency noise arises from additive white noise
sources internal to the oscillator loop, such as thermal noise
[3]. It is also found in passive atomic standards where white
noise sources directly modulate the locked oscillator output
frequency via the control element [24].

d) Flicker phase noise is usually added by noisy electronics,
e.g., by output amplifiers or frequency multipliers, and can be
reduced by radio frequency (RF) negative feedback and com-
ponent selection [25]. ‘

e) White phase noise is usually due to additive white noise
sources external to the oscillator loop [3]. Bandpass filtering
the oscillator output signal is then useful.

3) Power-Law Pathologies [12]: Power laws are useful
models for data obtained over a limited Fourier frequency
interval. Extrapolation over the whole frequency domain from

TABLE 1
Tue Power-Law MoODEL FoR SpecTRAL DENSITIES

Sy (f) . Sy (f) Designation

h,f? v: h, 4 Random walk frequency noise

f1 v: h, {3 Flicker frequency noise

-1

ho v; hyf? White frequency noise
h, f vl h, £ Flicker phase noise
h, f2 v: h, White phase noise

f=0to f=90, ie., beyond the range of applicability given by
observations, yields mathematical difficulties such as infinite
power and divergence of some time-domain stability measures.
But this results from the use of an unrealistic model ignoring
the constraints of the real world such as finite bandwidths and
finite duration which prevent both high-frequency (HF) and
LF divergence from being observable. Also, the instantaneous
frequency generated by any real source is bounded and thus,
models of §,,(f) with infinite area are physically unrealistic.

In practice, the power-law model is often used as follows

[8]:

+2 ‘hafa’
Sy(f)=< a2
0, >

O0Sf<fp

(3.10)

where a sharp upper cutoff frequency f, is introduced. Some-
times, the actual shape of the cutoff is of importance [6] and
must then be specified. As will be seen in the next section,
time domain stability measures sometimes depend on fj, which
must then be given with any numerical result, although no rec-
ommendation has been made for its value (1 to 10 kHz is
typical).

‘A lower cutoff frequency is usually not included in the power-
law model since useful time-domain measures have been de-
fined such that convergence arises for Sy( f) given by (3.10).
Moreover, no- experimental results indicate clearly the value
that should be included: measurements have just shown that
flicker-type spectral densities extend down to very-low Fourier
frequencies, e.g., smaller than one cycle per month as observed
on quartz oscillators [26]. No flattening has yet been observed.

F. Oscillator Spectral Purity

When dealing with the frequency domain for oscillator spec-
ification, it is. of value to introduce the concept of spectral
purity, i.e., a frequency-domain estimate of the quality of
the oscillator quasi-sinusoidal output signal V(¢).

To this end, the spectral density S,(f) of the complete sig-
nal V(¢) is used and often referred to as RF spectrums since it

5 Strictly speaking, v, -is not restricted to the RF range and may be
in the microwave, infrared, or even visible according to the source unde
test. . :
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Fig. 2. Signal spectral purity: The RF spectrum.

takes significant values only around vq. Knowledge of it is of
prime importance in several applications such as radar, spec-
troscopy, frequency synthesis and communications.

Nevertheless, S,(f) is not considered as being a good primary
measure of frequency stability since amplitude fluctuations
€(t) also contribute to S,(f) [8]. Moreover, it is not simply
related with other measures of frequency stability in the most
general cases. ‘

It is only when AM noise is negligible and the root-mean-
square (rms) value of ¢(¢) is much smaller than one radian
that a simple approximate relationship may be derived [3],

[5]:
:K‘Zl (TS) ¢_
Su() == {(8(f-vo) + ST r-wo)}.  (3.11)

As pictured on Fig. 2, the continuous noise sidebands around
the discrete carrier centered at vy have then the shape of the
spectral density of phase noise. This so-called low-modulation-
index approximation may be used for high-quality frequency
standards for which the above assumptions are reasonably ful-
filled. Sometimes, the complete formula is needed, e.g., to
forecast spectral purity of a signal after very high ratio fre-
quency multiplication [27] as realized for laser-frequency
measurements, L

Neglecting AM noise, the complete relationship between
phase noise spectral density and RE spectrum® reads as [28]

2
Sy(f) =% ™" {5(f~ vo) + SSI(f - vo)

+ 3 1589 @ s},TS)(f)}po} . (312)
o2 1!
In this equation, (¢?) denotes the mean-square value of ¢(¢)
which is agsumed to be a stationary Gaussian random process.
[Sgrs)(f) ® S‘E,TS)(f)],,0 denotes n — 1 convolutions of S (f)
with itself, followed by ‘a translation around the carrier fre-
quency Vy. Due to the infinite sum, the noise sidebands no
longer have the shape of Sw(f).
More precisely, an increase of {p?) yields:
1) adecrease of carrier power (due to the exponential term);
2) a change of the noise sidebands shape (due to the in-
creasing contribution of the convolutions);
3) a decrease of carrier-to-noise power ratio since the total
area under §,(f) remains constant Vi)

SRF spectra of signals randomly modulated in amplitude, phase and
frequency have been studied by several authors with other backgrounds
than frequency standards specification, see for example Middleton
[29].
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If necessary, the contribution of AM noise may be taken
into account as shown in the following equation:

V2
Su(1) = 1807 v0) +SF(f = wo) +5TVs - wo)}

(3.13)

where Sgrs)(f) is the two-sided spectral density of the frac-
tional amplitude fluctuations A(¢) = €(¢)/ V.

Direct measurements of high-quality oscillator’s spectral
purity is very difficult because of the ultralow sideband levels
encountered and the limited capabilities of even the best RF
spectrum analyzers. The measurement of Sw(f) is often used
as a means to estimate S,(f) through (3.11).

IV. CHARACTERIZATION OF FREQUENCY STABILITY
IN THE TIME DoOMAIN

Since instabilities in oscillators are time variations of the
quantities of interest (phase, frequency, fractional frequency),
they may be characterized by a measure of the variations that
occur over a specified time interval 7: this is the basis of the
so-called time-domain characterization (time-interval or
averaging-time domain would be more appropriate). Since
random phenomena are involved, the relevant measures are
again given in terms of statistical parameters. These values
are usually plotted versus 7 which may vary from say milli-
seconds to days, months, or years.

Some important applications of frequency standards directly
rely on the time domain behavior of the output signal, e.g.,
timekeeping [30]. In this case, a time-domain instability mea-
sure is really what is needed, rather than a frequency-domain
one. The techniques described below are not restricted to
power-law spectral densities and may be used with other noise
types.

A major difficulty will arise from the fact that many param-
eters may indeed be considered as time-domain measures: one
gives here a presentation showing their respective properties
and relationships.

A. Basic Measurements

The oscillator instantaneous frequency v(¢) defined in (2.5)
is not an observable since any frequency-measurement tech-
nique does involve a finite time interval over which the mea-
surement is performed ; forexample, a digital frequency counter
counts the number of cycles ny of the input signal during the
time interval 7 begining at ¢, provided by its time base driven
by a reference oscillator.

Therefore, the average value of v(¢) over a time interval 7
begining at ¢, provides a more useful quantity directly re-
lated to an experimental result:

1 tp+T n
W)y, , =vo + —f Av(0)df=—= (4.1)
, T J T

The normalized quantity y; defined as follows is widely

used [8]:
1 tk+T
Yk = —f y(0)do 4.2)
T iy
and then
WOy, = vo(1 + %) = 'fr—" (4.3)
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From (2.7) and (2.9), it can be demonstrated that

—k=80(tk+T)‘ (1) (4.4)

2AV6T

where the numerator denotes the phase error accumulated
from ty to t; + 7, also known as the first phase increment or
first difference of the phase [30], [31].

Since y, is easily related to experimental results given by
counting techniques, it will be used in the following to define
the time-domain parameters. More precisely, one individual
measurement of duration T provides one sample ¥ ; repeated
measurements of y; are necessary for a statistical treatment
yielding a meaningful measure of instability over 7.

B. The True Variance [3]-[6]

Due to the random fluctuations of y(¢) in real oscillators, re-
peated measurements of y; give numerical values that are ran-
domly scattered i.e., they are samples of a random variable:
for each value of 7, a statistical characteristic of the dispersion
of the y, provides a time-domain measure of instability over
T.

To this end, the variance 0?2 (or the standard-deviation o) is
widely used in statistics. Assuming that y(¢) and hence the
¥ have a zero mean, the variance is equal to the mean square
value of yy :

o* [kl =<¥h). (4.5)
The bracket { ) denotes either a statistical average calculated
-over an infinite number of samples at a given instant #;, or an
infinite time average made over one sample of y(¢) (ergodicity
of y(¢) is assumed). Because of the infinite number of samples
or infinite duration implied in its definition, this variance is an
idealization often referred to as the true variance. It will be
denoted as I%(7) to indicate that it is a measure of instability
over a time interval 7.

For stationary frequency fluctuations, the general shape of
I(1) reported on Fig. 3 shows the following limits:

1im0 I(T) =/{y2(t) (4.6)
lim I(1)=0. 4.7

The first limit corresponds. to ideal instantaneous frequency
measurements (7 =0) and hence is equal to the rms value (i.e.,
the standard deviation) of y(¢#). The upper limit means that
stationary fluctuations would be completely averaged out for
7= and hence the dispersion of the results would be zero.
Of course, none of these limits are observables. The decrease
of I(1) as 7 increases indicates better averaging of stationary
random fluctuations.

Properties but also limitations’ of the usefulness of I(1) will
be studied in Section V through its relationship to Sy(f).

C. The Sample Variance [7], [8]

The true variance I2(7) is a theoretical idealization since it
involves an infinite number of data: practical estimates of it
must be based upon a finite number of samples y;. The so-
called sample variance.is defined from an ensemble of N
samples y, with k=1,2,3,---, N and tg,, =t +T. The

"Especially, I*() does not converge for some kinds of noise such as

flicker frequency noise.
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Fig. 4. The measurement cycle in the time domain.

corresponding measurement cycle is shown on Fig, 4, where
T is the repetition interval for individual measurements of dura-
tion 7 (=71 + dead time between measurements) and #; is
arbitrary. '

Several related definitions may be given for the sample
variance [32].

1) First Definition: Following the general definition of the
variance of a random variable x, namely 02(x) ={(x - (x)*, a
logical definition of the sample variance reads as

s 1 N[ 1N\
oW, T, T-)=JT/ Z(}’i‘]v]gl y/') .

i=1

(4.8)

This quantity is itself a random variable, N being the sample
size. Several factors may be used to characterize the “good-
ness” of an estimator [20], bias being one of them: an esti-
mator is unbiased if its mean value equals the true parameter,
namely if

0y, T, 1)) =1%(7). (4.9)

This equality should hold for any value of N, T, and 7 and any
kind of noise. Thus the relation between (0(21)(N, T, 7)) and
12(7) has to be studied carefully: let us consider the specific
case of great importance where the samples are adjacent
(T = 7); then, the following relation holds [7], [32]:

(o)W, 7, ™) =1*(1) - I*(NT). (4.10)
For stationary frequency noise (Fig. 5):
lim (o2 (N, 7, 7)) =I%(7). 4.11)
N oo

Hence, for finite V, the above estimator is biased for any kind
of stationary frequency noise and the bias may be calculated
from the theoretical knowledge of 7 *(N7). The other defini-
tions of sample variance given below are such that the bias is
indeed zero for a given definition and a corresponding kind of
noise. )

2) Second Definition and White Frequency Noise: For
white frequency noise (see Table I), equation (5.6) yields
I*(1) = ho /27 and hence,

(ofy W, 7, )= < —]%)1'2(7). (4.12)
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In this case, the following definition provides an unbiased
estimator:

0y, T,7) (4.13)

1 & (_ 1 ﬁ _\?
= 4 Vi~ o yj) .
N'_ 13 Nj=1
For T = 7 and white frequency noise
(o)W, 7, 7)) = I3(7).

The factor 1 - 1/N appearing in (4.12) is found also for
other stationary noises when 7 is much greater than the cor-
relation time of y(2), i.e., when the samples y; are indepen-
dent: this is a classical result in statistics [20].

3) Third Definition and White Phase Noise [32]: For
white phase noise including a cutoff frequency f;, equation
(5.6) yields I?(7) = hy fp/2m?7* for 2mf,T >> 1 ; then,

(4.14)

1
(o)W, 7, 7)) = (1 - F) 1*(7). (4.15)
In this case, the following sample variance is unbiased for
anyN=2and T=r1:

) N & [_ 1N _\2
b (o) we
To summarize, we are faced with several definitions of the
sample variance, many values of N 22, and a wide range of
possible values of T2 7: also, the value of f,, is sometimes of
prime importance (e.g., for white and flicker phase noises).
To achieve the goal of recommending a unique time-domain

measure, some choices must be made.
D. The Zero-Dead-Time Two-Sample Variance

To allow meaningful comparisons of measurements in the
time domain, one sample variance must be chosen with specified
values of N, T, and f,(7 being the independent variable).

Following the work of Allan [7], the IEEE Subcommittee
on Frequency Stability has proposed the following time-
domain measure [8]:

1) the average value of 0(22)(N, T, 7) given by (4.13) is used,

namely (0(22)(N, T, 7)) often denoted as (a3(N, T, 7));
2) the sample size is taken as N = 2;

3) adjacent samples (zero-dead-time) are assumed, and
hence T=17.
The resulting measure reads as
) 2. /{1 .2 _\2
(oy(2,‘r,‘r))=<z Vit > y,) > (4.17)
i=1 j=1

PROCEEDINGS OF THE IEEE, VOL. 66, NO. 9, SEPTEMBER 1978

The short notation 0;,(1') is widely used for that quantity

o2(r) = (72 - Y1)V, (4.18)
It is also known as the Allan variance or the pair variance.

Several comments are of value.

1) Since infinite duration is implied in the average denoted
as (), 0;,(1') is a theoretical measure in the same sense as I2(7):
however, as shown in Section V, it has a greater practical util-
ity since it exists for the five power laws encountered in real
oscillators (Table I). Also, simple experimental estimators
may be devised for 03(7) (see Section IV-E).

2) From the discussion on the various sample variances, it
appears that 0;,(7') is biased except for white frequency noise,
but one has to remember that other noises are found as well
in oscillators; from (4.10) and (4.17), one gets:

03(r) = 2[I*(1) - I*(27)). (4.19)

For white frequency noise and white phase noise, the follow-
ing relations are valid, respectively,

03(r)=1*(7)  (no bias) (4.20)

and

o2(r)=31%(r) 2mfpr>>1 (bias).  (4.21)

3) The choice of N =2 in the preferred definition yields an
easy measurement process since only pairs of samples are in-
volved: this choise is really the key feature in the definition of
03(7).

4) Although no recommendation was made for the value of
fn, it has to be specified with any experimental results.

E. Estimates of the Two-Sample Variance

Only estimates of 0}2,(1') can be obtained from a finite num-
ber of samples ¥ and an inherent statistical uncertainty exists.
With m values of y;, a _possible estimator reads as [8]

Z (Fier -

l-—l

03(r,m) = ¥ (4.22)
This quantity is itself a random variable whose variance (i.e.,
the variance of the variance) may be used to calculate-the
error bars on the plot of oy(‘r) versus 7. For Gaussian noises,
Lesage and Audoin [33] have shown that the error bars (con-
fidence intervals) for power laws are given by

Eq=0y,(r)Kom™/2,  form>10 (4.23)

with K, =K; =099,Ky=0.87,K_, =0.77,K_, =0.75.
Also, other estimators of 0}2,(1') are possible and have been
considered [34].
For long-term stability (7 of the order of months or even a
year) one is severely limited in the size of m. In any case, m
should be stated with any results.

F. Translations Among the Time-Domain Measures

For the five integral power laws shown on Table I, as well as
intermediate values of ¢, two “bias functions” have been in-
troduced by Barnes [35] to translate from (oy(Nl, T,, 710
to (oy(Nz , T2, T,)) (the second definition given by (4.13) is
used):

(0N, T, 7))

4.24
(052, T, 7)) 429
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and
~ (052, T, 7))

2 (05(2,7, o

(4.25)
They have been computed and tabulated in [35].

Note that B, allows one to calculate the recommended mea-
sure 0;(1) from a two-sample variance measured with dead-
time, provided the spectral density slope is known:

(022, T, 7V
o2(r) = L=~ (4.26)
2

This is of practical interest since counting techniques usually
have nonzero dead-time between successive measurements.

V. TRANSLATIONS AMONG FREQUENCY-DOMAIN AND
TIME-DoMAIN MEASURES: THE
TRANSFER FuNCTION CONCEPT

To cover adequately the needs of oscillator users, two do-
mains have been considered, namely the Fourier frequency
and the (averaging) time domains. Moreover, several param-
eters have been introduced in each case. Translations among
frequency domain measures and then among time domain
measures were dealt with, respectively, in Sections III-C and
IV-F.

It is now of prime importance to study the translations be-
tween the two domains for several reasons:

1) these relations provide a unified picture of frequency
stability characterization;

2) the power laws which have been identified in the fre-
quency domain may be translated into specific laws of
I(t) or 05,(7) through these relations;

3) stability measurements are sometimes made in only one
domain due to equipment availability or capability:
relations between parameters can then give an estimate
of the performance in the other domain.

As will be demonstrated, a so-called “transfer function” ap-
pears in the general relationships between frequency domain
and time-domain parameters.

This concept will be used in the following, either to study
the properties of classical time-domain measures, or even to
introduce new time-domain measures offering new measure-
ment capabilities (Section VI).

A. True Variance Versus Spectral Density

First, the true variance [ 2(}‘r) will be expressed in terms of
§,(f)as

12(r)=f Sy HH (NP df (5.1)
(1]

where H;(f) is a transfer function.
1) Demonstration: Equation (4.5) may be rewritten as

) 1 tk+T 2
I“(1)= v y(0)de

197

: o 2
12(T)=<<f y(t) hy(ty - t)dt> >

(5.2)

or again

(5.3)
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Fig. 6. (a) Mcasurement sequence of the true variance. (b) Transfer

function of the true variance.

with
0, t<-7
1
he(2)= —T—, -T<t<0 (5.4)
0, t>0.

Equation (5.3) includes a convolution integral where y(¢) is
convolved with a function h;(¢) which resembles the basic
measurement sequence of one sample y, (Fig. 6(a)). This
integral may represent the output signal of a hypothetical
filter with impulse response k() receiving an input signal y(¢):
it is well known that the spectral density of the output signal
is then given by the product S,(f) |H;(f)I* where the filter
transfer function H;(f) is the Fourier transform of h;(¢)
and hence (Fig. 6(b)):

(5.5)

Hy (PP = (Si“ mrs )

wTf

The true variance which is the mean-square value of this pseudo-
output signal (5.3) is then equal to the area under its spectral

density, i.e.,
oo . 2
12(1')=f sy(f)(smmf> af.
0

nTf

(5.6)

Thus the true variance may be calculated from Sy( f) through
an integral including the transfer function (sin 77f/m7f)? [3],
[5], [6] and this is not restricted to power law spectral
densities.

The above relationship cannot be reversed in a closed form
in the most general cases, i.e., Sy(f) cannot be expressed in
terms of I2(7); this is an example of the key role played by
spectral densities for random process characterization.

2) Applications: Some limitations of the usefulness of 12(7)
appear from the fact that the transfer function is equal to one
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Fig. 7. (a) Measurement sequence of the two-sample variance.
Transfer function of the two-sample variance.

for mrf<<1: thé true variance is therefore very sensitive to
the low Fourier frequency components of S,(f), ie., to the
very slow fluctuations of the oscillator output frequency
v(t).

More .specifically, a. major problem arises for flicker fre-
quency noise since the model Sy(f) = h_lf‘l yields I%(7) =
o, Thus the true variance is not suited to study real oscil-
lators since most of them are perturbed by this noise [23].
Of course, this is' a model pathology but the practical utility
of I*(7) is also severely limited since actual measurements
of I*(7) depend on the total number of samples and increase
indefinitely with it when flicker frequency noise exists [5],
[71:

For this reason, the true variance has never been widely
used as a practical stability measure, although it may be use-
ful for theoretical work with well-behaved spectral density
models. As an example, the RF spectrum S,(f) may be de-
duced from I%(7) when @(f) and y(¢) are Gaussian processes
with y(¢) stationary [28]:

V2 had 2
OE —2—°f exp (- %0- 7212(T)>

“cos woT exp (—i2nafr)dr. (5.7)

The laws found for white frequency noise and white phase
noise are, respectively, '

12(7)=Z—: (5.8)
and
(r) = 2fh - sin 2mfpT ‘ .
(= et | 2nf,T (5-9)
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In the last case, fj, is necessary for convergence and 1(7) ~ 77!

for 2nfp7 >> 1.

For flicker phase noise, a HF cutoff is also needed for con-
vergence and I(1) ~ 77! for 2nf,7>>1 [6]. Thus, both
white and flicker phase noises provide the same slope on an
I(1) curve, and thus cannot be unambiguously recognized
from such a plot. '

B. Sample Variances Versus Spectral Density

Let us consider the second definition of the sample variance
given by (4.13) since it has been recommended as a basis for
time domain measures. The relation between its average value
and Sy(f) may be demonstrated very simply for adJacent .
samples® [37]: combining the definitions (4.8) and (4.13)
with the law expressed by equation (4.10):

(0d, (N, 7,7)) =Ni_T [A(r)- P(VD]. (5.10)

The substitution of (5.6) into this relation gives:

(02N, T T))=——N—
y i) > N_l

‘fw ( )(srnnrf) [l_(sinNnrf>2]d 511
o S Tf Nsinnrf LG

The key point is the transfer function which behaves now as
[NV + 1)/31(n7f)? for Narf << 1.

Convergence of the integral at the lower limit is thus ensured
even for. flicker frequency noise and random walk frequency
noise: the sample variance is thus a useful tool for time domain
characterization. Greater values of N increase the sensitivity
of the sample variance to low Fourier frequency components:
in fact, the true variance is approached as N = o,

C. Two-Sampled Variance Versus Spectral Density

Since 0;(T) is by far the most widely used time-domain
stability measure, let us consider its relationship with S,(f)
and apply it to the typical kinds of frequency variations en-
countered in real oscillators.

Making N = 2 in (5.11) gives directly

05(7) =f0 S,()

The transfer function is such that the integral converges at the
lower limit for the five power laws reported in Table I. Here
again, the relation cannot be inverted for the most general
cases.

As shown on Fig. 7, the-transfer function |H 4 (/)| appear-
ing in (5.12) is the |Fourier Transform|? of a step-wise time
function s 4(¢) that resembles the measurement sequence of
the quantity (¥, - yl)/\/_ involved in the definition of
o},(r) (4.18).

This general property will be used later to develop new
time-domain parameters.

2sin*nrf

e catll (5.12)

8A complete derivation was given by Cutler for nonadjacent samples

[8]:

sin 77f sin NnTf \*
<Uy(N TT))———f Sy(f)( ) [l —(m)]df
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1) Application to the Power-Law Model: The substitution
of the widely used power-law spectral density model into
(5.12) yields the expressions shown in Table II.

From these results, it appears that:

1) An upper cutoff frequency f, is necessary for white and
flicker phase noises since a substantial fraction of the noise
“power’” lies in the higher Fourier frequencies when Sy(f)
varies as f2 or f It has to be specified and the reported ex-
pressions are valid only for 27 £, 7 >> 1.

2) U;(T) obeys to power laws with a slight modification for
flicker phase noise because of the logarithm. Thus a log-log
plot of Uy(T) contains segments of straight lines whose slopes
may be easily identified.

3) The results may be used to translate from time domain
into the frequency domain for the power law model (3.9), al-
though the general relationship (5.12) is not reversible. Since
both white and flicker phase noises give very similar slopes,
there is some ambiguity in noise identification when time-
domain measurements give ¢,(7) ~ 17! (varying f,, purposely
may help to distinguish between white and flicker phase
noises {6]).

4) For flicker frequency noise, 6,(7) is independent of 7
and the corresponding flat part on the plot is often referred
to as the flicker floor [23]. )

For a given oscillator, U;(T) is the sum of two or three
terms, e.g., cesium beam standards are often well-modeled
by '

2 ho
oy(r)=—+2In2h_, (5.13)
27
and the values of 7, and #_; may be deduced from measure-
ments of oy(f) over a sufficient range of 7.

5) o;('r) can be a useful measure even when the model of
(3.9) is not valid.

2) Application to Sinusoidal FM: Even the best sources are
frequency modulated by unwanted sinusoidal signals. Al-
though the above stability measures were developed to deal
with random processes, sinusoidal instabilities do have an in-
fluence on them.

a) Fourier frequency domain: Assuming that

AVO .
y(t)=v—-sm 27t (5.14)

0

the spectral density Sy(f) contains a discrete line at the modu-
lating frequency f,,:

1Ay \?
Sy(f)=— — a(f_fm)
Yo

3 (5.15)

Looking for discrete lines in spectral densities provides a con-
venient means to identify periodic variations. Their presence
usually does not interfer with the identification of the slopes
due to random noise.

b) Time domain: The substitution of (5.15) into (5.12)
gives® ~ .

» 20 A_vo_>2 sin*nf,, T
0y,(7) < TR (5.16)

Thus the effect of sinusoidal FM is zero when T equals the

Yo

? Direct calculation through (4.18) and (5.14) gives the same result.
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TABLE II
Two-SaMPLE VARIANCE 076) For THE Power-Law SpecTraL DensITY
MopEeL (ADAPTED FROM [8]; See ALso [36])

Slope of
Sy (f) ay r) a) (1) VS 7
on log- log plot
3h,f,
. 2
e 4 nts? -2
h
h,f —— 11.038 + 3In2nfy7 -2
4n2r?
ho
h = -1
° 2r
h. f! 2in2 h, 0
) 21 h, T
hat? -5 +1

modulation period T, =f,! or one of its harmonics since
the modulating signal is completely averaged out.

The worst case occurs when 7 is near T,,/2 or one of its
harmonics [19], [38].

As a practical consequence, when caution has not been
exercized about the relation between the experimental values
of 7 and the expected value of T, , there may be some scatter
of the data because of the oscillating behavior of (5.16) (of
course, this scatter is added to the law(s) due to the random
noise(s) present).

3) Application to Linear Frequency Drift: Equation (5.12)
is not useful for evaluating U;(‘T) when linear frequency drift
exists (i.e., ¥(#) =d;(1)) since no tractable model seems to
exist for Sy(f) in this case.

Direct calculation in the time domain from (4.18) gives:

d;

0,(1) \/57' (5.17)
Thus, linear frequency drift yields a 7%! law for the square
root of the two-sample variance. Such a law is observed for
great values of 7 when linear frequency drift has not been re-
moved before statistical treatment. (Notice that no power
law spectral density yields the same law; from Table II, it
should be Sy(f) = h_3f'3 but 0}2,(‘1') diverges in this case due
to its transfer function).

Higher order polynomial drifts will be treated in Section
VIII in relation with structure functions.

VI. TRANSFER FUNCTIONS AS A TooL TO DEFINE
NEw PARAMETERS

Up to now, we have dealt only with the basics of frequency
stability characterization.

1) Two domains have been considered and parameters have
been defined independently in both domains.

2) Relationships have been established among these param-
eters that include, for each time-domain parameter, a specific
transfer function which is the Fourier transform of the mea-
surement sequence. Let us emphasize that the shapes of the
transfer functions were not chosen a priori, but result from
the definition of the time-domain parameters.
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3) From the experimental point of view, spectrum analyzers
are commonly associated with frequency-domain measurements
and digital electronic counters with time-domain measurements.

In this section, the transfer function concept will be used as
a tool to define new parameters giving new possibilities to
existing measurement test sets.

A. The Hadamard Variance

The Hadamard variance has been developed by Baugh [39]
for making high-resolution spectral analysis of y(¢) from mea-
surements of yy, i.e., the frequency-domain parameter S,(f)
is estimated from time-domain data provided by digital
counters.

First, the limitations of the two-sample variance’ of,(’r) for
such a spectral analysis must be emphasized and understood.

1} Limitations of oy('r) for Spectral Analysis: Equation
(5.12) shows that oy('r) is not well suited for high-resolution
spectral analysis of y(¢) since the main lobe of the transfer
function (Fig. 7(b)) is wide. As a consequence, for a given
value 7. of the averaging time, the measured estimate 3},(76)
wﬂl not provide a precise estimate of S, (f,) where f, =~ 0.37
72! is the main lobe center frequency for T=T,.

For power-law spectral densities, the fact that both white
phase noise and flicker phase noise yield nearly the same slope
ay (1) ~ 77! results from this lack of selectivity.

However, let us remember that O‘y(T) was introduced and re-
commended as a practical meaningful time-domain measure
and not as a powerful spectral analysis tool.

2) Definition of the Hadamard Variance: Using the link
between measurement sequences and transfer functions, the
Hadamard variance is defined by a measurement sequence such
that the corresponding transfer function contains a narrow lobe
well-suited for spectral analysis [39] :

OB (N, T, N=(F1 = y2+¥3 - - Ip). (6.1
The Hadamard variance!® is thus calculated from groups of N
samples Y, (k =1 to N) and is related to Sy(f) by:

(0}(N, T, )= f Sy (N Hy (NI df (6.2)
(1]

where the transfer function Hg(f) is the Fourier transform of
the measurement sequence hg () (shown on Fig. 8(a) forN =6
and T=7).

Sauvage [40] has shown that:

- sin m’f)2 (sinNan) 2
[ Hu (D] ( nrf cosnTf

(6.3)

The transfer function exhibits a narrow main lobe centered at
the Fourier frequency f; = (27)7; its bandwidth decreases with
increasing N as. demonstrated from the calculation of an equiv-
alent bandwidth [40].

Before emphasizing the practical utility of (6};(N, T, 7)), its

limitations must be recognized and accounted for.

3) Limitations of the Hadamard Variance: Here again, the
limitations are a consequence of the transfer function shape.
Although it has a narrow main lobe, it contains also other un-
wanted features:

197 and 7 have the same meaning as for the sample variance. oy('r) is
one half times ¢ O'H(N 75 'r)) wnth N=2:
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Fig. 8. (a) Measurement sequence of the Hadamard variance. (b)
Transfer function of the Hadamard variance.

a) For adjacent samples (T = 7), spurious responses appear
at odd harmonics of the main lobe center frequency f;. When
measurements of {07 (V, 7, 7)) are made, they all contribute to
the measured value and thus may lead to important errors in
the estimate of S, (f;). For white phase noise where S;,(f) =
hy f each harmomc lobe yields the same contribution to the
measured Hadamard variance as the main lobe (which ideally
should be alone);

b} As shown on Fig. 8(b), the transfer function has also
large Sidelobes around the main lobe centered at f;.

4) Improvements of the Hadamard Variance: Limitation (a)
can be partly eliminated with-a dead time between successive
samples of yi, i.e., with T>>7. The optimum dead time Tp =
7/2 eliminates the 3rd, 9th, 15th, etc., harmonic responses;in
this case T = 37/2.

More complicated. measurement sequences have also been
proposed to reduce the harmonic content wherein a pseudo-
sinusoidal weighting of the samples ¥, suppresses the 31d, 5th,
7th, and 9th harmonics [31], [40]. Analog filtering tech-
niques have also been used to filter out the spurious harmonic
responses [41].

Limitation b) may be partly or even completely eliminated
by multiplying each y; within the set of N samples by an ap-
propriate weighting factor. The unwanted sidelobes are com-
pletely suppressed by weighting the samples with binomial

coefficients (BC) [39].
A0t (N, T, 7)) = <(z - k" 1( i )yk>> (6.4)
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and the corresponding transfer function reads then as k[3l]
[40]:

. 2
sin 71T,
f) sin?™ ) 177 (6.5)

— N-
IHHBC(f)I2 = 2% 1)< —

S) Practical Utility of the Hadamard Variance: Provided
adequate care has been exercized to overcome its limitations,
the Hadamard variance is a useful tool for experiments since it
extends frequency domain measurements down to very low
Fourier frequencies of the order of 10~ Hz just by increasing
T and 7 in the time domain, whereas analog spectrum analyzers
are usually limited to about 1 to 10 Hz by hardware problems.

For the optimum dead time 7 = 7/2, a working approxima-
tion of equation (6.2) giving an estimate of S,,(f) reads as:

§y(f1): N~L<0?'I(N> %51’)>

where T = 37/2 and f, = 1/2T = 1/37. Through this equation,
spectral density estimates are made from measurements done
with digital counters in the time domain. Of course, the
Hadamard variance is itself estimated from a finite number of
groups of NV samples yy.

(6.6)

B. The Transfer Function Approach

In all the preceding approaches to time domain, any param-
eter, say 02(7), was defined by its measurement sequence h(t)
(a step-wise function involving quantities such as N, T, 7, and
possibly weighting factors) and related to Sy( )by

02(T)=f Sy(OVH(N)I? df (6.7)
0

where H(f) is the Fourier transform of h(t). The parameter
was measured with a counter programmed to follow the chosen
measurement sequence.

In the so-called ““‘transfer function approach” developed by
Rutman [42], the opposite point of view has been adopted:
the parameter 62(7) appearing in (6.7) is defined by the trans-
fer function H(f) whose shape is chosen a priori, even if no
corresponding measurement sequence exists in the time domain
(i.e., even if -the inverse Fourier transform of H(f) is not a
step-wise function). One can thus consider a broader class of
transfer functions since they need not be the Fourier transform
of step-wise functions: however, counting techniques can no
longer be used to measure the parameter defined in this way
since the y;’s do not explicitly appear in this approach. The
relevant measurement technique will be described.

To illustrate the usefulness of this approach, let us study two
variances defined by their transfer functions, the ‘high-pass
variance” and the ‘‘bandpass variance.”

1) The High-Pass Variance: First, it is convenient to rewrite
(6.7) as

s (7 ,
o) = —— f SoUONH (NI df (6.8)
WoT 0
since (5.12) can itself be rewritten as
2 ~ 8 ” .. 4
o0y(1)= ——% f So(f)sin® wrfdf. (6.9)
WoT 0 ) .
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Fig. 9. Transfer function of the high-pass variance.

- TABLE III
Higu-Pass VArIANCE FOR THE Power-Law SpecTrAL DensiTy MobeL [42]
Slope Opp (1)
Sy (f ? A
v @ ke 1) vs.T g, ()
2h, f
h, 12 :h -2 1.63
n? 12
’ h . 1
h, f LI [m (1 + (mfh)‘)] x-2 1.36 10 1.63
27242 {rrfy = 10 to o)
h .
ho 2 -1 1.19
JiT
R mh,
h,f o 1.06
2
. nth, 7
h,f? +1 1.03
vz

* Convergence for higher negative siopes can be obtained by taking a higher-order high-pass
Butterworth filter. Second-order was chosen here for greater. similarity wlth sin * 7 7 f for
rr <<,

The subscript ¢ in IH“,(f)I2 indicates that IH“,(f)I2 multi-
plies the spectral density of phase noise. The new variances
will be named according to the shape of their | H,(f)I*.

The high-pass variance oHp(T) is defined by (6.8) with a
second-order high-pass Butterworth filter: .

1
fe+rt
where the cutoff frequency f. is such that | <pHp(fc)|2 =0.5.
The relation between f, and the value of T in UHP(T) is chosen
as fc (m7)™! by definition!!; the above |H¢Hp(f)|2 and
sin*wrf appearing in equation (6 9) are illustrated on Fig. 9:
they are very close for ﬂTfS 1, but IH (f) I2 is not periodic.

The expressions of UHP(T) for the power-law spectral den51ty
model are reported in Table III and show that Uy(T) and ofjp(7)
have the same general behavior: same laws versus 7, same
dependence or independence versus f;, same range of con-
vergence for power laws (due to the choice of a second-order
filter for U]Z.IP(T)), and same order of magnitude as shown by
the ratio oyp(7)/0;,(7) which may be interpreted as a bias co-
efficient when gyp(7) is used as an estimate of g,,(7).

[ Hppp (NI = (6.10)

"'Notice that sin® n7f; = 0.5 for f, = (n7) .
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From this similarity, one gets a better understanding on why
of,(‘r) is not well suited for high-resolution spectral analysis:
despite the bandpass shape of each lobe, the sin? 77f transfer
function has indeed a global high-pass behavior which is poorly
selective (in particular, white phase noise and flicker phase
noise cannot be completely resolved by this filter).

Moreover, the high-pass variance demonstrates clearly that
instability (due to random noise) over a time interval T is
equally due to all Fourier frequency components of S‘p( )
lying above f, = (n7)7Y, e.g., above 318 Hz for 7= 1 ms, (and
under f). This result has been used to estimate oy(‘r) from
records of the RF spectrum assuming the low modulation index
is valid (3.11) [28]; a working formula for white phase noise
reads as

3fh 10"|ﬁo|/10

6.
2m? v3r? (6.11)

o(r)=
where 3 denotes the RF spectrum level under the carrier ex-
pressed in dB/Hz. Formulas are given in [ 28] for other power-
law noises.

2) The Bandpass Varignce: Having recognized the lack of
selectivity of oy(T) and oyp(7), one may use the transfer func-
tion approach to introduce a more selective variance through
(6.8): the bandpass variance o%p (1) defined by its second-order
bandpass Butterworth transfer function with a center fre-
quency fo = (27)7! and a constant Q factor (by analogy with
the first lobe of sin*n7f centered at £ = (27)™! and for which
Q= 1.37). Fig. 10 shows the new transfer function.

The expressions of 02Bp(‘r) for the power-law model are re-
ported in Table IV and show significant departures from those
of 02() or ofyp(7).

The higher selectivity of |H¢BP(f)lz has the following
consequences.

a) The high-frequency cutoff fj is no longer necessary for
convergence in the cases of white and flicker phase noises and
therefore does not appear anymore in the relevant expressions
of ofp().

b) The slope of 0]231: (1) takes a different value for each kind
of noise including white phase and flicker phase noises for
which it is equal to =3 and -2, respectively, (instead of -2 and
=~ -2 for 0},(7’)). For white phase noise, it is worth noting that
opgp(7) does not provide an estimate of oy(‘r), even with a con-
stant bias, since the slopes are different.

For the threelast kinds of noise, ogp(7) nevertheless provides
an estimate of oy(‘r) with bias factors near unity as shown in
the last column. .

To summarize, ogp(7) should not be considered as an esti-
mator of 0,(7) but rather as a useful tool in describing the
statistical properties of oscillators since it reveals the presence
of white and/or flicker phase noises on a time domain plot
[43].

These properties of ggp(T) are not surprising if we realize
that the bandpass variance is indeed nothing but a constant
percentage bandwidth (constant Q) spectral analysis of phase
noise, the result of which is plotted in the time domain through
(6.8).

Also, the bandpass variance may be viewed as an ideal
Hadamard variance since the goal of any improvements on the
latter is to get a transfer function with a single narrow lobe
without any spurious responses: thus there is a conceptual link
between the two approaches relying on the transfer function
concept (of course, the measurement techniques are different
as shown below).
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Fig. 10. Transfer function of the bandpass variance.

TABLE IV
BanDrass Variance FOR THE Power-Law SpectraL Density MobeL [42]
(@=1n
2 Slope Ogp (7}
Sy {f) ol 7}
vs. T oy (1)
h
hy 2 2 3 1.22
27277 T,
hy 3
hf - -2 —_—
V2 7 v1.038+31n21rfh7
h
hy J2ho -1 0.95
T
5h,
h - o 0.90
V2
8vih
h,f2 2haT +1 0.74
m
I

3} Practical Utility of the Transfer Function Approach: Be-
yond its conceptual interest, the practical utility of this ap-
proach is in the additional possibilities it gives to the well-
known phase detector measurement technique (see Section
1X). )

From (6.8), the parameter ¢(7) may be viewed as the rms
value of the phase fluctuations ¢(¢) filtered by a suitable trans-
fer function H,(f) aremultiplied by the constant 8 (wem) L.
Thus this approach leads to a data acquisition technique re-
lying on a suitable filtering of the demodulated phase noise
and therefore the phase detector technique may be used since
it provides an analog output voltage proportional to the os-
cillator phase fluctuations [22], [44], {45]. -

An experimental test set designed for that purpose has been
developed [43] and includes the following.

a) The well-known phase detector system with a loose
phase-lock loop: the output voltage is proportional to the
oscillator phase noise for Fourier frequencies greater than
about 1 Hz when the loop time constant is about one second.
Such a system is often used for frequency-domain measure-
ments.

b) A filter whose transfer function H,(f) may be adjusted
to several shapes, especially high-pass and bandpass.

¢) A true rms voltmeter as the final measurement apparatus.

According to the filter response which has been selected, it
is possible to measure the following.
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a) S,(f) with a narrow bandpass filter, and this is indeed
the classical application of this test set.

b) oyp(7) with a high-pass filter having a cutoff £, = (n7)™!;
the upper cutoff frequency f3 is usually provided by another
low-pass filter,

c) ogp(7) with a constant Q bandpass filtér having a center
frequency fo = (21)7".

In the last two cases, o(7) is simply given by

o(r)= Koogr Urms 6.12)
where K is a calibration constant and vy, is the measured rms
value of the filtered voltage analog to ¢(2).

Thus a unique experimental test set provides stability mea-
sures both in frequency and time domains, without any digital
counter and associated statistical treatment of data in the latter
case. Following the same basic idea, bandpass filtering of y(¢)
at the output of a frequency discriminator has also been used

to provide an estimate of 0,,(7) [46].

VII. OTHER SUGGESTED TIME-DOMAIN MEASURES

In this section, we describe two more time-domain ap-
proaches relying on specific statistical treatments of the yj
usually provided by counting techniques. In both cases, the
new parameter is believed to be more “‘efficient” than Oy(T)
in some respect to be discussed; the transfer function appears
again as a convenient means to interpret their respective
properties.

The links with the Hadamard variance and the sample vari-
ance will be given when appropriate.

The expressions of the new parameters will be presented for
the power-law spectral density model allowing thus easier com-
parisons with the recommended time-domain measure 0,,(7).

A. Finite-Time Frequency Control

This method introduced by Boileau and Picinbono [13] is
based upon a combination of the y; that may be interpreted
as a modified sample variance.!? To illustrate this approach, a
specific modified sample variance E-},(T) has been considered in
[47], the expressions of which are given below in Table V for
the power-law spectral density model.

1) The Modified Sample Variance: From N discrete values
of ¥, the following quantity is defined as a modified sample

- variance:
2

2 _ 1 &
Zy(N: T,7)= (J’(Nn)/z‘]‘v‘ 2 J’i) 7.1
i=1

where NV is odd and y(5y41);, denotes the central sample within
a set of N samples.

T and 7 have the same meaning as in Fig. 4. Of course,
E},(N, T, 7) is a random variable and its infinite time average
is related to S, (f) by the following integral [13]:

2 - = [ sin w7f 2(
Zy(N,T,T)/-fo sy(f)< o > 1

12Continuous expressions were also developed in [13] and reviewed
in [47]. Only the discrete realization based on discrete values of yi is
presented here..

sin NnTf )2
N sin nTf

(7.2)

1063

TABLE V
MobDIFIED THREE-ADJACENT-SAMPLE VARIANCE Ei(r) FOR THE Power-Law
SpecTrAL DEnsiTY MoDEL (7 fi, >> 1)

S () =2 ) Soe i'—(‘:)’

hy f2 Z:_:::. -2 0.86

hyt 95":'12 [‘954 +Inmrhy ] x_2 (::'::5:;3;35&)
ho -;% -1 0.82

by £ 8in2 ; 3In3 by o 0.74

h, €2 2 2h, +1 0.58

b, 271n3 ; 32in2 w2 h, 72 +2 _

h 4 % 7t hy, ? +3 -

The new transfer function behaves now as (N2 ~ 1)? (nT)? /
36 for NnTf<<1, i.., for the lowest Fourier frequencies.
Due to this behavior, this time-domain parameter is convergent
for the powerlaw model S,(f)=hsf® even for a=-3 and
o = -4 (whereas the classical sample variance was limited to
a = -2). It is interesting to note that the law S,(f)=h_3 f3
has been referred to as a possible model for a high-level quartz-
crystal oscillator at Fourier frequencies around 1 Hz [21].

Thus . the finite-time frequency-control method allows one
to deal with spectral densities having greater negative slopes
(sometimes interpreted as “‘stronger nonstationarity”) than the
classical sample variance approach.

2) The Modified Three-Adjacent-Sample Variance: For the
same reasons as it appeared useful to recommend the use of
one particular sample variance 0}2,(1), comparability of data
will be improved by specifying the values of N and T in
(E}, (N, T, 7)), with T remaining the independent variable [47].

Let us consider the modified sample variance with T = 7 (ad-
jacent samples as in O;(T)) and N = 3 (the smallest possible
value of N for this measurement sequence where N is odd).1?
Equations (7.1) and (7.2) then read as:

2 1  __ _  _
Zy(3:T’T =§(2y2_y1_y3)2 (73)

2 S = 16 sin®nrf
Zy (T)=<Zy (3,T,T)>=£ Sy(f) 5 Wdf

(74)

The transfer function is the Fourier transform of the time-
domain measurement sequence as shown on Fig. 11.

13 A so-called curvature variance has been introduced by Kramer [60],
[61}, which is equal to 1.5 times £3,(7). The second difference of Y or
the third difference of ¢ was also discussed by Barnes in {30} and [69].
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Fig. 11. (a) Measurement sequence of the modified three sample
variance. (b) Transfer function of the modified three sample vari-
ance.

Table V gives the expressions of 2)2,(1) for the power-law
model, including the cases & = -3 and & = -4 for which g,,(7) =
©, For the five other encountered laws, X,,(7) is an estimator
of 0,(7) with constant bias coefficients reported in the right
column: both follow the same laws vs 7 and f;, and have the
same order of magnitude. Especially, Ey(‘r) is not better

suited- than 0,(7) to distinguish between white phase noise-

and flicker phase noise that yield nearly the same slope.

3) Relations with Previous Approaches: First, it must be
recognized that 23(3, 7, T) is quite different from 03,(3, T, T)
derived from (4.13) withN=3 and T=17:

1l g g —3 e — — — —
033, 7.1 = 3 (FE+33 +¥3 - 51572 - 5173 = 72 73).

(7.5)

However, the Hadamard variance weighted by binomial co-

efficients (6.4) with N =3 and T = 7 reads as

(0F o3, T, TN =¥y - 272 +73)™) (7.6)

and hence

2 1 .
2, M= 5 (e Go 7, 7. (1.7)

It is easy to verify that making N =3 and T = 7 in (6.5) and
then dividing by 9 yields the transfer function appearing in
the above integral (7.4).

This link with the weighted Hadamard variance will be inter-
preted in the next section from the study of structure functions
of phase.

As far as the transfer function approach is concerned, expres-
sion (7.4) may be rewritten in terms of the spectral density of
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phase noise:

2 64 .

2 (M= it L S,(f)sinarfdf.  (1.8)
Thus E; () can be estimated by high-pass filtering the demod-
ulated phase noise, but a third-order Butterworth filter is
needed to yield the same convergence properties as the sin®77f
transfer function.

To summarize, the new parameter Ey(‘r) whose experimental
estimation by counting techniques is not very complicated, has
the same behavior as Uy(‘l') for power-law spectral densities,
except that it converges for two more negative slopes (one of
which has been mentioned in [21]); therefore, its use may be
recommended whenever a law such as Sy(f) = h_3 3 (or
h_4 %) is expected from some theoretical and/or experimen-
tal consideration; then, variations of Ey(T) ~ 7 (or 13/2) may
be observed for the greater values of 7. Note that these laws
cannot be observed for Uy(‘r) since + % is the highest positive
slope that arises with power-law models; this point will be dis-
cussed in greater detail in Section VIII in connection with the
effects of polynomial drifts.

B. Frequency Instability Over a Time Interval T

In all the preceding time domain approaches, the parameter
of interest (I(1), 6,(7), oyp(7), 0gp(7), or 2, (1)) was plotted
versus the averaging time interval 7 which may vary from say
1073 s. to thousands of seconds or even days or months. The
decreasing parts of the curves show then the averaging of sta-
tionary random noises and, beyond the flicker floor, the in-
creasing parts are due to nonstationary effects (either random
or deterministic).

Another point of view has been proposed by De Prins and
Cornelissen [48] who studied the frequency fluctuations over
a time interval T for a fixed value of the averaging time interval
7. the parameter is thus plotted versus T (which has in this
paragraph the same meaning as in Fig. 4).

Let us consider first the case 7-= 0 for simplicity and then
the case 7 ¥ 0 which is physically realistic.

1) Zero Averaging Time (7= 0): An ideal sampling of y(t)
at tp(k = 1, 2, 3, - - *) such that #;,, - tx = T yields the in-
stantaneous values y(t;) denoted as y,. This idealized mea-
surement process corresponds to instantaneous frequency
measurements (7 = 0).

The difference 6y =y, - ¥, is a measure of the instantane-
ous fractional frequency instability over the time interval T
from ty to t,. This is of course a random quantity whose
mean-square value may be used.as a statistical meaningful
measure of frequency instability over 7

By =y, - y)?. - (1.9)

Since only one sample of y(t) is usually available to the ex-
perimenter, a suitable measurement process has been recom-
mended [49] to avoid artefacts due to correlation between
data.

This parameter is simply related to Ry(‘r) and Sy(f) by

GyFr=2[R,(0) - R (T)] (7.10)

<5y2T>=f S, (f) 4sin*nTf df. (7.11)
0
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Fig. 12. (a) Measurement sequence of (87%‘). (b) Transfer function of
(87%) for T = 37,

Assuming that y(t)vis a zero-mean stationary process with
finite variance {(y2(1)) = R,(0), the following limit holds (see
(7.10)):

Tlim Gy = 2(p2)N. (7.12)

Assuming that Sy( f) has an upper frequency cutoff fy, it is
easy to show from (7.11) that:

(6y%) =~ 41rzﬁyT2, for nTf, << 1

(7.13)
where ﬁy is a constant equal to*
Th
B,= | r*s,(f)dr. (7.14)
()

Thus the evolution of (6y§~) with T is quite different from
the laws of any other time-domain measure versus the averag-
ing time interval 7 and this may be traced to the shape of the
periodic transfer function appearing in (7.11). This evolution
may be said to be “cumulative” in the sense that all the pos-
sible values of y(t) are scanned and contribute to {(§y%) as T
increases (instead of being averaged out with increasing 7).

2) Nonzero Averaging Time (T#0): Since experimental
test sets provide averaged samples ¥, (4.2), it is of practical
interest to generalize the definition of (5y%) as follows:

GyB =72 - 7). (7.15)

The measurement sequence and transfer function are shown on

“goar a power law Sy(f) = hafq, the constant equals 8y 4 =
+ 2
hofp  [(a+3).
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Fig. 13. The time-domain parameter (5 }7}) versus T for the power law
model.

Fig. 12, and the relationship with Sy(f) now reads as

sin m7f

0 2
<8i%>=f Sy(f)4(——> sin?aTfdf. (7.16)
0

nTf

As shown below, this parameter is simply related to one par-
ticular sample variance.

3) Relation Between (§y#) and the Sample Variance: From
the following definition of the sample variance

2 1 N - 1 N _\2
ay(N, T, 1) = N1 ":[; <y,-—1; /; y,-) (7.17)

it is easy to demonstrate that

(83 =2{03(2, T, 7). (7.18)

[n other words, (§¥2) is just twice the two-sample variance with -
nonadjacent samples (T > 7) which will be here studied versus
T for a fixed value of 7. Thus (7.16) is a particular case of the
general formula given by Cutler (equation (23) with N = 2 in
[8];see also footnote 8).

Except for white phase noise for which a more complete
formula is given here, the expressions of {(§y%) reported in
Table VI are thus deduced from (0}2,(2, T, 7)) given in [8],
Appendix II. :

For T = 7, these expressions are equal to 20)2,(7') as expected
from (7.18), except the one for flicker phase noise valid only
for T >> 7. For increasing values of T, the evolution of (§7%)
is pictured on Fig. 13: it is linear for random walk frequency
noise, logarithmic for flicker frequency noise, independent of
T for white frequency noise and it approaches the limit value
of (4/3). 0},(7‘) for white and flicker phase noises (this evolu-
tion also appears on [35], Fig. 2 where the bias function B,
(4.25) is plotted for 0 < T < 27).

These expressions have been used by Cornelissen {49] to
predict the long-term behavior of frequency standards.

For real oscillators wherein flicker frequency noise is ever
present, a logarithmic law of {§7%) versus T may be expected
for the greater values of T (when not masked by random walk
of frequency or by deterministic drifts). In particular, linear
frequency drift modeled by y(t) = d, t yields:

(672)=d3T? (7.19)

To summarize, despite its simple mathematical relationship
with the two-nonadjacent sample variance, the parameter
(6)7%) has been introduced on a quite different conceptual
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TABLE VI
Tue TiMe-DomAIn PARAMETER < 837 >For THE Power-Law SpEcTRAL DENsITY MODEL
S 0 <67§> for T>7
h; fh 1 sin2r (T=7) f,
h, 2 ia L o
’ rir? ( 2 27 (T—) fy or 77 fy >>1
Tiry? ¢
hy f 2 {0577 + mantyr + L 10 ) or T8y >>1
LS 2 (T/7)? -1 and T>>7
hy
ho D
T
2
hat? h.y 2O I+ (Tea) n(Taa) s (T-q) w(I-1 X2h, In X for T>>7
T p - . :
h_f? 2m2 h T_
2 a2 h, ( 3)

basis where emphasis is put on the time evolution of the fluc-
tuations under study. Therefore, it may appear more useful
than oy(r) for certain kinds of prediction problems [49], and
exhibits unfamiliar laws reported on Table V1.

VIII. THE STRUCTURE FUNCTION APPROACH

In the preceding sections, the discrete samples ¥, provided
by a suitable measurement process have been used to define
the following quantities that serve several purposes:

1) the true variance given by (4.5), as a theoretical measure
of time-domain frequency instability;

2) the sample variances given by (4.8), (4.13), or (4.16), as
practical measures of time-domain instability; 0;(7') given
by (4.18) is just a particular case;

3) the Hadamard variance (6.1) or (6.4), as a time-domain
measure leading to spectral density estimates;

4) the modified sample variance (7.1), as a time-domain
measure which converges even for $,(f) ~ f =3 and 74,
with 22 (7) given by (7.4) being a partrcular case;

5) («SyT) grven by (7.11) as a different means to present
instability data in the time domain.

In the original references, these parameters have been intro-
duced to serve one of the above mentioned purposes but no
unified presentation had been looked for.

The structure function approach developed by Lindsey and
Chie [50]1, [511 plays such a unifying role in the sense that the
most important time-domain parameters appear as particular
cases of one general concept, namely the so-called structure
function.

This theory is presented below with special emphasis on its
relationships with previous approaches and on its application
to deterministic polynomial drifts.

A. Definition of Structure Functions

For M =
defined by

1, the Mth increment of a random process g(¢) is

M M
AMg(s: 1) = Ea (—1)"<k )g(t +M-K)71). (8.1

The process g(¢) has a stationary Mth increment [15], [16],if

the following averages exist for all real T and 7 and do not de-
pend on the instant ¢:

(AMg(;7)) = al7) (8.2)
(A®Dg(e;7) - AMg(e + T, 1)) =DMNT; 7). (8.3)

In other words, the Mth increment has a time independent
mean and its autocorrelation depends only on the time dif-
ference (wide sense stationarity).

By definition, D(M (T'; 7) is the structure function of the Mth
increment. In the following, the Mth structure function of the
random process £(t) will be defined as D (T 0; 7) and de-
noted asD (T)

DI (1) = (AP g(s; 7). (8.4)
B. Application to Oscillators Instabilities: Phase Instability
Versus Frequency Instability

When dealing with instabilities in quasi-sinusoidal oscillators,
the structure function concept may be applied to the phase
fluctuations ¢(¢) and to the (fractional) frequency fluctua-
tions y(t), yielding two sets of parameters [50]. Distinct
definitions may thus be given for phase instability and fre-
quency instability, whereas these two concepts have often
been confused in the literature. To illustrate this point, let us
consider the first (M =1) structure functions of ¢(¢) and of y(¢).

1) Phase Instability: Phase instability over a time interval 7
may be defined as the ratio of the rms value of the phase noise
accumulated during 7 seconds to the phase accumulated by a
noiseless oscillator (we7). This quantity is simply related to
the first structure function of phase noise:

N T LRI

WoT WoT

(8.5)

\/Dél)('r).

‘But (4.4) and (4.5) show that the above quantity is indeed

nothing but the true standard deviation /(1) usually interpre-
ted as a theoretical measure of frequency instability (the
limitations of which have been pointed out).

2) Frequency Instability: Fractional frequency instability
over a time interval T may be defined as the rms value of the
fractional frequency fluctuations y(¢) accumulated during T
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TABLE VII
StrucTURE FuncTiONs oF Prase: ReLaTioNs wiTH OTHER TiME-DomAIN PARAMETERS
o )
Mo A g (t;7) D 0 {r) Relations with other measures
- 2.2 =2 : _ 1_ (1)
1 W, TY, we T <yl> I(T)_wﬂ‘r {r)
- 2 S — 1 (2)
2 @, 7Y, — V) W, 7 <y, =V, > oy ()= — o Dy (7}
3 = - — 2 _2 - = =32 _ 1 3)
w, 7y, 25, +Y,) wo 72 <y, — 2y, +Y,}* > EY(T)-—'S__ Dy f7)
h wﬂ‘r
M 1 M - (M=1 2 1”7 1
i 2 4 i — 2 __1 ™}
M w"TiE -1 ( ,I)y, Wy T <<i£1 =1 (i—1>yi> > <Oy (M, 7,7)> “ o D\p {r)

seconds; this is just the first structure function of y(¢) [52]:

V(e +T) - y(O]2 =VDGXT). (8.6)

Moreover, it is equal to+/(6y%) defined in (7.9); that is why
we kept the symbol T instead of 7 in (8.6).

The parameter (§3%) defined by (7.11) is related to phase
structure functions as follows [47] :

7% = 2 = D7) - pYNT; ). (8.7)
WoT

When dealing with yj, structure functions of phase appear
because of the link between y; and the first increment of
@(t) expressed by (4.4). Structure functions of phase are
hence of prime importance for oscillators instability charac-

terization.

C. Structure Function of Phase

First, it must be remembered that taking the Mth increments
of the phase had been proposed by Barnes [30] as a powerful
means of classifying the statistical fluctuations in oscillators:
Structure functions of phase are just another way of rewriting
these quantities.

1) Mth Increment of Phase Versus yj: Since the y, are
meaningful data, it is of interest to rewrite AM) @(t;7) in terms
of the M values of yj involved. By definition, AM)y(z; 7) is
calculated from the instantaneous values of ¢(¢) at the instants
t,t+T, 427, t + M. Thezthvaluecp(t+(z-l)1) where
i=1 toM +1,1is welghted by (-1) (; 1) when M is odd and by
(-1)i*t ( 1) when M is even; the term (¢ + M7) has always a
positive s1gn from the def1n1t1on of AMp(z: 7).

By using relation (4.4), AWM (t, T) may then be rewritten in
terms of the M values of y; (with kK = 1 to M) involved in its
definition [47] :

AMy(t;7) = wor Z (-1yk

k=1

M-1
M
(k 1>yk, odd

(8.8)

AMp(t; 1) = onZ( 1) (M l)yk, M even.

=1

1
(8.9)

These expressions are used next to relate D&,M )(T) to some of
the time-domain measures.

2) Interpretation of D&,M)(T) in Terms of sze-domazn
Measures: From (8.8) and (8.9), the expressions ofD (T)
calculated for M =1, 2, 3, etc., are reported in Table VII and
show that some of the previous time domain measures may be
re-interpreted in terms of structure functions of phase.

For M = 1 and M = 2, the structure function is related to the
true variance I2(7) and to 0;(1), respectively, as pointed out
by Lindsey and Chie [50].

For M = 3 and for M even (=4), it is related respectively to
E;(T) and to the Hadamard variance with adjacent samples
weighted by binomial coefficients as pointed out in [47].

The unifying role of the structure function concept is then
clear from the right column of Table VII.

3) Relation Between D (T) and S,(f): The relation be-
tween structure funct1ons of phase and S ( f) may be easily
deduced from (6 5) with T = 7 and from the relation between

DY")(r) and (o} 5 (M, 7, 7)) reported in Table VII:

2M7TTf

@y

DM (1) = 22M D (4472 f Sy(f) —
0

(8.10)

The corresponding inverse transform relationship can be given
in terms of Mellin transforms as shown in [50] ; however, the
formula involved are rather complex to use.

Because of the exponent. 2M appearing in the transfer func-
tion, the desirability of taking structure functions with higher .
orders becomes obvious from the point of view of convergence
with power-law spectral densities having steep negative slopes:
this general relationship in connection with the expressions re-
ported in Table VII explains why Ey(T) is “more convergent”
than 0,,(7) which is itself “more convergent” than I(7).

When S‘p( f) may be defined unambiguously, equation (8.10)
may be rewritten as

DgM)(r)=22Mf S,(f)sin*Marfdr.  (8.11)
0

4) Application ofD&,M)(‘r) to Polynomial Drifts: Up to now,
we have been concerned mainly with the characterization of
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TABLE VIII
Time-Domain ParaMeTERS FOR PoLynomiaL Prase Driet
ORDER OF THE PHASE DRIFT POLYNOMIAL (P}
2 3 4 P
(Linear frequency drift) {quadratic frequency drift) {cubic frequency drift)

1 time dependent " time dependent time dependent time dependent
z
[ d, .
= 2 gy lrf=— 7 time dependent time dependent time dependent
g vz
w
o
Q
=z
3:1 2 2 . .
2 3 0 Zylr)=—=d; 7 time dependent time dependent
x 3
a
w
T
[
w
o
o« 4 0 0 Ouge = 6d, 73 time dependent
a
o
@]

M=P ) ) 0 Ouge= P-1) 1d,, 77

random fluctuations in oscillators: however, nonrandom varia-
tions (drifts) of the output frequency do exist in most devices
and can be sometimes modeled by deterministic polynomial
functions [91. In this context, structure functions are also of
interest since they provide a means to obtain insight into the
highest order drift coefficient, i.e., into the long-term instabil-
ity of the source [50].

Let us assume that the oscillator frequency drift is modeled
by a (P - 1)th degree polynomial (P = 2):

J R
y@) =3 djt'.

i=1

(8.12)

Integrating from O to ¢ yields an Pth degree polynomial for the
phase drift:

P-1 .
p(t)y= 3 D' (8.13)

i=1
where the coefficients D; are related to the d; by

wod;
=T 8.14
Di= ( )
A frequency measurement beginning at t; and lasting 7 seconds
yields the average value (ignoring random fluctuations):

P-1 d; . .
V=2 [ + )" - 1. 8.15
Y= 2 Ginr [t +7) k) (8.15)

Substituting this expression into (8.8) or (8.9) allows one to
study the properties of the successive phase increments in the
presence of polynomial drifts:
a) the phase increments of order M smaller than P are time
dependent and hence are of little use as measures of the
drift constant coefficients;

b) the phase increments of order M greater than P are all
equal to zero and hence are meaningless;

c) only the Pth phase increment (M = P) as time-independent
and nonzero:

APp(t;7) = (P - 1)! wodp_,7F. (8.16)

It is directly related to the highest order drift coefficient dp_;,
and provides thus a measure of long-term instability since
dp_y t?~1 becomes the dominant term in (8.12) as ¢ increases
[50]. Of course, real oscillators are equally perturbed by
random noises and the higher phase increments will not be
zeto but rather will provide a measure of the noise through
relation (8.10).

For a better comparison among drifts and random instabili-
ties, it is of interest to calculate parameters such as 0y(7),
Zy(m) or others for polynomial drifts; for that, expression
(8.16) may be substituted into the quantities appearing in
Table VII. The results are shown in Table VIII: for a given
value P - 1 of the de%’ee of y(¢), only one paraméter is of
interest and varies as 7° 1: e.g., 0y() varies as 7 for linear fre-
quency drift and Ey(‘r) as 12 for quadratic frequency drift.

The above results have been used to make an algorithm to
test for the highest order of frequency drift (and also for the
presence of power-law noises) based upon observing the be-
havior of samples of structure functions [50].

D. Structure Function of Frequency

From the mathematical point of view, it is also possible to
deal with the successive increments of y(¢) defined as [52] :

M
AMyry =3 -1k
k=0

(il)y(t +M-k)r). (8.17)

However, this quantity involves the instantaneous values of
»y(¢) which are not observables and hence its practical utility is
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limited. Nevertheless, calculations show that D(M )(7') has gen-
eral properties very similar to those of D (T) wh1ch is related
to observables through equations (8.8) and (8.9).

1) Random Instabilities: In this case, D(M)(T) is related to
§,(f) by

DﬁM’(T)=22Mf S,(f)sin*Marraf  (8.18)
0

which is analog to (8.11) for phase noise. Again, higher values
of M allow one to deal with more divergent power laws.

2) Polynomial Drifts: From the model given by equation
(8.12), it can be demonstrated that:

a) the frequency increments of orders M smaller than P - 1
are time-dependent and hence not very useful;

b) the frequency increments of orders M greater than P - 1
are zero, and hence meaningless;

c) only the (P- 1)th frequency increment is both nonzero
and time-independent and reads as:

AP Dy(r;7) = (P - Didpy 777, (8.19)

1t is directly related to the highest order drift coefficient in
y(t), and is equal to O e appearing in Table VIII.
As particular cases, for P = 2 (linear frequency drift):

AWy(t;7) =/2 a,(1) (8.20)
and for P = 3 (quadratic frequency drift):
A®Dyiry=32, (). (8.21)

Thus structure functions of frequency applied to polynomial
drifts, provide essentially the same information as structure
functions of phase.

E. Long-Term Instability of Oscillators

For great values of 7 (say, days, months, etc), significant
frequency instabilities may arise from both very slow random
fluctuations and very slow deterministic frequency drifts; they
are modeled, respectively, by power-law spectral densities with
negative slopes and by polynomials. Structure functions allow
one to deal with both kinds of processes as shown above (see
(8.10) and (8.16)): it is then of interest to compare the laws
obtained for the relevant parameters.

A problem is that the Mth-order structure function of phase
allows one to deal with several spectral densities Sy,(f) = ho £,
namely down to a > -(2M - 1), whereas it yields a significant
value only for the Mth-order polynomial phase drift ¢(¢) =
Dpg_ 1t As a consequence, with a unique statistical param-
eter (i.e., derived from a fixed order structure function) it is
not possible to establish a full correspondence between power
laws and polynomial drifts in the sense that one sample of each
would yield a significant law for the parameter of interest.

The results presented in Table 1X show the laws of 0,(7),
2,(7) and OHBC(N, 7, 7) for power laws with integral negative
slopes and polynomial drifts: generally speaking, these param-
eters follow a positive-slope power law versus 7, with increasing
slope when either the negative slope of Sy(f) or the order of
the polynomial drift increases.

More specifically, for random processes, the maximum posi-
tive slope versus 7 of the standard-deviation derived from the
Mth-order structure function of phase is M - 3/2 for integral
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TABLE IX
Lonc-TerM INsTABILITY: SLOPES OF TiME-DoMAIN
PARAMETERS FOR RANDOM NOISES AND
PoLy~NomiaL DriFTs

Sy (f) ay () Zy (1)
h, 7 70
h 2 §2 12 i/
h, 3 00 r
h, 4 oo 7302
h, % o o
‘max slope for
integral values of o 12 32
M—2
2
Parameters
y () =d, , ! of interest
Slope : P—1
d,t oy (T)~T1
d,t? Zy (1) ~7?
d,t3 Ohige ~ 13
d414 OHpe ™~ T4

values of « (e.g., Oy(T) derived from the second order phase
structure function has a maximum positive slope of 1/2).
For nonintegral values, the actual maximum is <M - 1. On
the other hand, for a drift y(¢) =dp_, tP'l, only one standard-
deviation is of interest and follows the law 7771,

Thus it is impossible to have a specific power law (« fixed)
and a specific drift order yielding the same slope versus 7 for
the same time-domain parameter (of course, different param-
eters may follow the same law, e.g., Z,(r) ~ 7 for §,(f) =

h_5 £ and 0y(r) ~71fory(t)=d, t).

As a consequence, a careful study of the laws of 0,(7),
Ey(T) and OHBC(N, 7, 7) versus T should allow one to deter-
mine unambiguously whether the frequency standard is dis-
turbed by such or such random noise and/or by such or such
polynomial drift; these conclusions are summarized in Table X.
Note that these comments are true only for integral values of «
in the power law spectra. If o can take on fractional powers,
say a = -2.8, then 0,(1) ~ 792 and 1t is convergent. As «
gets close to =3 but a > -3, Oy(T) — 7*1 and remains conver-
gent.

Of course, visual inspection of an historical graph of y; versus
time may be very helpful.

Also, for finite data sets, a spectra of h_5 3 or h_s 75 may
well give false diagnosis even though ¢,(7) and 2 ,(7) are not
convergent for these noises.
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TABLE X
IDenTIFICATION OF RaNDOM AND DEeTERMINISTIC POLYNOMIAL VARIATIONS FORM THE LAws OF

0,(r) AND Z,(r)

The law of gy (7)

indicates the presence of

r12

random walk frequency noise

linear frequency drift

The law of Zy (r)

indicates the presence of

172

random walk frequency noise

Sy lf)=h, 3

Sy () =h, 4

quadratic frequency drift

F. Summary

The structure function approach introduced by Lindsey and
Chie appeared very fruitful in terms of:

a) theoretical unification of the various parameters proposed
as time domain measures;

b) new possibilities for dealing with power-law spectral
densities of random noises and with polynomial drifts.

In this paper, the unification process has been developed by
showing the relations between D(‘pM )('r) and previous param-
eters for M 2 3 (see Table VII).

Also, the use of structure functions for identifying power
law type random noises when polynomial drifts are present has

been outlined (Tables IX and X), but great care must be ex-

ercized since false diagnosis may arise.'’

IX. FREQUENCY INSTABILITY MEASUREMENT

Even the most sophisticated statistical parameters are of no
practical value for oscillator specification if they cannot be
measured experimentally, i.e., estimated from finite samples
of data. To this end, in parallel with the theoretical develop-
ments reviewed in this paper, much work has been devoted in
the laboratories to the implementation of measurement test-
sets capable of resolving the very small fluctuations of preci-
sion frequency sources. These systems rely heavily on the
development of modern components and instrumentation such
as low noise mixers/amplifiers and digital counters or spectrum
analyzers. .

It is not our intent to give here technical descriptions of
these systems that have been described with great details in
many references (see for example: [1], [2],[19],[21],122],
[38], [41], [44], [45], [54], [55], [57]). The goal is rather

5During the review process of this paper, reference [70] has been
published where emphasis is put on the identification of powerlaw

type spectral densities. Note that the parameter Dx3)(f) appearing in
their Table I is related to Z;,(‘r) in our Table V by Z;,(‘r) = DS) (r)jor*.

to emphasize some of their features. Readers are referred to
original references for circuit descriptions.

A. The Need for a Reference QOscillator

To measure the frequency of one oscillator, at least two
oscillators are indeed needed, e.g., one of them providing the
time base of the digital counter (this is of course a particular
case of the need for a reference in any physical measurement).

As far as the reference oscillator has a better stability than
the oscillator under test, measured instabilities are due mainly
to the latter. But when dealing with state-of-the-art sources,
both oscillators are often of the same type and have nearly the
same quality; the assumption is then made that they have un-
correlated random frequency fluctuations with identical statis-
tical properties: the measured standard deviations must then
be divided by v/2 to get the contribution of one oscillator. A
method has been proposed for estimating frequency instability
of an individual oscillator, using data obtained by comparing it
with at least two other oscillators [53], assuming their FM
noises are uncorrelated; the method works even if the “refer-
ence” oscillators are less stable than the oscillator under test,
although confidence in the results deteriorates rapidly if the
test oscillator is much better than the references.

B. Frequency Versus Time-Domain Measurements

The dichotomy that appeared in the theory is of course
found again in measurement apparatus: classically, digital
counters are used for time-domain measurements and low-
frequency spectrum analyzers for frequency-domain mea-
surements.

However, theoretical developments leading to parameters
such as the Hadamard variance or the high-pass variance have
attenuated this dichotomy, since spectral densities may be
measured by counting techniques [31], [39], [40] and vari-
ances may be measured by filtering techniques [43], [46].

Generally speaking, frequency-domain and time-domain
measurement systems have several common parts even when
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the output measurement apparatus (e.g., a counter or a spec-
trum analyzer) is not the same.

C. The Need for Demodulation

Since we want to measure the phase or frequency fluctua-
tions of the oscillator quasi-sinusoidal output signal, techniques
for demodulating these fluctuations are required before mea-
surement and statistical analysis.

A PLL wherein a reference oscillator is locked to the oscil-
lator under test, the two signals being then in phase quadrature
at the phase detector inputs, is often used for that purpose:
the PLL time constant is chosen as to provide a phase detec-
tor output analog voltage proportional either to the phase or
to the frequency fluctuations over the Fourier frequency range
of interest [22]1, [44], [45], [59]. According to the settings
and the measurement apparatus used, the PLL system may be

" used either for frequency or for time domain measurements.

Sometimes, dispersive elements are used as frequency dis-
criminators to convert frequency noise into an analog voltage
[54].

D. The Need for High-Performance Systems

The state-of-the-art of time and frequency standards has
advanced to such a level that a single measurement apparatus
is unable to resolve directly their very low fluctuations by lack
of resolution, sensitivity or dynamic range.

Techniques are therefore needed to enhance the fluctuations
before measurement: for example, frequency multipliers fol-
lowed by heterodyning, or frequency error multipliers have
been used for that purpose. For the same reason, a very low
noise amplifier is included between the phase detector in the
PLL technique and the measurement apparatus.

" The system noise must also be kept at a lower level than the
oscillator noise level to be measured; in this respect, the advent
of Schottky barrier diode mixers (used as phase detectors) has
been a significant breakthrough in implementing low-noise
measurement test-sets. It is recommended to measure system
noise before any measurement on oscillators as shown in [55].

E. Automated Measurements

Following a general trend, automated measurement systems
have been developed for both frequency and time domains
[381, (541, [561, [58]. Automated systems are really useful
in this field since great numbers of data have to be processed,
various statistical treatments are made yielding different kinds
of parameters and graphical plots of results are often needed.
.For these reasons, a calculator program may include frequency
selection, bandwidth settings, measurement sequence, statisti-
cal treatments, results plotting and even system calibration.

F. A Hierarchy of Measurement Systems

While developing a high-resolution time difference measure-
ment system, Allan and Daams [59] have set up the following
hierarchy of measurement systems according to the quantity
that they can measure:

a) time;

b) time fluctuations;

¢) frequency; )
d) frequency fluctuations.

For a system capable of measuring say time fluctuations, fre-
quency and frequency fluctuations can be deduced from the
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results, but time cannot; and so on for the other systems in
this hierarchy. The systems of status a) with state-of-the-art
performance provide the greatest flexibility in data processing,
i.e., systems where time differences can be measured with
adequate precision. However, a system of status (d) is quite
satisfactory when frequency instability is the primary concern:
this is the case of the tight PLL system where the time con-
stant is of the order of a few milliseconds: the output voltage
is then proportional to the frequency (and not to the phase)
fluctuations for averaging times longer than the loop time
constant. This system is useful for time-domain measurements
with 7 of the order of one second and longer.

X. CONCLUSIONS

We have reviewed several proposed phase and frequency
stability measures including both well-known widely used
parameters and new concepts. For the latter, we have tried
to point out clearly their specific advantages through the study
of their transfer functions. In connection with structure func-
tions, the effects of polynomial drifts of great importance for
long term have been outlined and compared with those of LF
divergent random noises.

In all the approaches, spectral densities play a key role in
the sense that the other measures may be deduced from them
whereas géneral inversion. of the formulas is usually very diffi-
cult if not impossible.

In February 1978, Study Group 7 on “Standard frequencies
and time signals” of the International Radio Consultative Com-
mittee (CCIR) has adopted a new document (to be included in
[62]) recommending the use of spectral densities and, for
time domain, the use of the two-sample standard deviation
0y(7). This new recommendation is certainly of great impor-
tance at the international level for nonspecialist engineers
faced with the problem of stability characterization.

Nevertheless, it is felt that experimenters should be en-
couraged to try some of the new parameters since they may
prove useful, especially for research work where better insight
into the oscillator fundamental properties is looked for.

At this point, it must be emphasized that other analysis
techniques not covered in this paper have been developed with
possible applicability to frequency sources specification. Es-
pecially, the fitting of Auto-Regressive Integrated Moving
Average (ARIMA) models to the data provides a powerful
means of computer simulation and future values optimal pre-
diction [63]. Barnes has discussed their applicability to time
and frequency data, including the relation between the model
parameters and Sy(f) [12]. With more details, ARIMA models
have been used by Percival [64] for predictions of fractional
frequency of commercial cesium beam standards with lead
times from 1 to 64 days, and by Hiibner {65] for prediction
in the realization of time scales.

Of special interest in connection with frequency stability
characterization, Percival has proposed to use prediction errors
as a measure of frequency instability, i.e., frequency instability
is associated with a measure of frequency unpredictability
which automatically incorporates the systematic terms.

Other new approaches have been recently proposed such as
the finite-time variance defined as the mean of a general qua-
dratic form of the measurements [66], and the suggested ap-
plicability of ambiguity functions for stability characterization
when the oscillator is included in a global system whose per-
formance are looked for [67].
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At present, the existing models for random gaussian noises Frequency Domain

are well documented and provide a good background for

actual megsureme.nts .interpretation. However, future r'e- SéTS)(f) Two-sided spectral density | (3.2)

searches will certainly include the development of more sophis- on a per hertz basis of

ticated mode@s that may possibly improvg our understagding the real function g(t).

of. some osc1llz?tor fundamental properties, e.g., of ﬂlck.er Sg(f) One-sided spectral density (3.3)

noises and possible sporadic elements. These new models will of g(t). Applied in the

probably call for new stability measures. paper to: ¢(t), Av(z),

Thus although it appears to be mature, the field is still x(2), y(t), A(1), V(2).

widely open for research. As in the past, no doubt that the f Fourier frequency (w =

development of complex systems, such as digital communica- : 211).

tions [68], with stringent requirements as regards frequency Exponent of f for a power- | (3.9)

sources and clocks specification will provide a strpng motiva- law spectral density (usu-

tion. ally:a=2,1,0,-1, -2).

hy Positive real coefficient of | (3.9)
GLOSSARY OF SYMBOLS 7% in a power-law spec-
Many symbols are used throughout this paper. The most tral density.
important ones are defined below. For clarity, they aré pre- f3 HF cutoff of an ideal sharp | (3.10)
sented under several general headings. cutoff low-pass filter.
See Measurement Sequence
Symbols Definitions Equation ‘
T Averaging time interval for | (4.1)
* Signal frequency measurements.
ty The instant of the begin- (4.1)

V(t) Instantaneous output volt- | (2.1);(2.2); ning of the kth measure-
tage of a (quasi) sinu- 2.4) ment of frequency (k =
soidal signal generator. 1,2,3,---, N).

Vo Nominal amplitude of V(). | (2.1);(2.2); T Time interval between the | Fig. 4

2.4) beginnings of two succes-

Vg Nominal frequency of V(1) | (2.1);(2.2); sive measurements of
(angular frequency wg = (2.4) frequency (T =ty -
2mpg ). tk)'

- - N Number of data for calcu- | Fig. 4
Fluctuations, Modulatlons, lating a sample variance,
and Drifts a modified sample vari-

e(t) Random instantaneous (2.2) anc.e ora Ha‘?a_m ard
fluctuations of ampli- ivlil‘[r;;l;:; (positive
tude (amplitude noise). ) ’ o

(1) Random instantaneous (2.3);(2.4) m ForN =2, m+1 datza are | (4.22).
fluctuations of phase used to es‘flmate ?y(f)-
about 2mv,t (phase h(t) A real function of time (5.3)
noise). that resembles the mea-

Av(t) Random instantaneous (2.6);(2.7) S}lrement Sf:quence ofa
fluctuations of fre- tlme-.domam paramet(?r.
quency about vy Apphefd to several vari-
(frequency noise). ances in the text. .

v(t) Instantaneous frequency (2.6) Time Domain
of V().

x(t) Random instantaneous (2.10) Vi Instantaneous value of y{(t) | (7.9)
time error. att=ty.

y(t) Fractional fluctuations of | (2.9) Vi Fractional frequency fluc- | (4.2)

. frequency. tuations averaged from

A(e) Fractional fluctuations of | (3.13) tytoty +7.
amplitude. ny A counting result: number | (4.1)

fm Modulating frequency for (2.3);(5.14) of input signal cycles be-
a sinusoidal FM or oM. tween ¢ and ty + 7.

d; Polynomial drift coeffi- (5.17);(8.12) 1*(7) The true variance of yy. 4.5)
cient in fractional fre- a;(N, T, 1) Sample variance of N sam- | (4.13)
quency (ith order). ples yx(k=1to N). Three

D; Polynomial drift coefii- (2.3);(8.13) definitions are given in
cient in phase (i + 1)th the text. This symbol
order. applies to the second one.
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03(7)

n2
oy (r, m)

Eqy

(o{(N, T, 1))
(0Fr g (N, T, )
ofip(T)

opp(T)

S2(N, T, 1)

- 2%(r)

6y%)

(87%

Ry (1)

f

The above for N =2 and
T=7. Arecommended
measure of instability in
the time domain.

An estimate of 0;,(1) ob-
tained from m + | mea-
surements of y.

Confidence interval for the
above estimate and a
power law spectral den-
sity hg £ 2.

The Hadamard variance
with & samples yi(k =
1 to N).

The Hadamard variance
where the samples are
weighted by binomial
coefficients.

The high-pass variance
(measured by filtering).
The bandpass variance _

(measured by filtering). -

A modified sample vari-
ance of Nsamples y(k =
1 toN).

The above for N = 3 and
T=r.

The mean square of the
fractional frequency in-
crement 8y = y(tg 4 ) -
y(t ) where T=tp 4 ~ t.

The mean square of the dif-
ference between two
successive non adjacent
V(T > 7).

Correlation function of
the real function g(z).

(4.17);(4.18)

(4.22)

(4.23)

6.1)

(6.4)

(6.8); (6.10)

(6:8); Table IV

(7.1)

(7.4)

(7.9)

(7.15)

3.1

H(f)

Hy(f)

Transfer Functions
Ld .

The transfer function asso-
ciated with a variance
and appearing in its rela-
tionship with Sy( ). It
is the Fourier Transform
of h(t). Applied to sev-
eral variances in the text.

The transfer function ap-
pearing in the relation-
ship between a variance
and S,( f).

(3.1);(6.7)

(6.8);(6.9);
(6.10)

M

A®g(1;7)
Dg,M)(T; T)

D¢ (r)

Structure Functions

The order of an increment
or of a structure function
(positive integer).

The Mth increment of the
real function g(¢).

The structure function of
the Mth increment.

The Mth structure func-
tion of g(¢) defined as
pM)(T=0;7).

(8.1)
(8.3)

(8.4)

p

1073

The order of a polynomial | (8.12)

drift.
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